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The burden of HIV-1

• The HIV-1 epidemic — the facts:
• now in its fourth decade,
• 2.5 million new infections occurring annually worldwide,
• new infections outpace patients starting antiretroviral therapy.

• Most efficacious preventive vaccine: ∼31% reduction rate.

• Question: To what extent can HIV-1 vaccines be improved
by modulating immunogenic CD4+/CD8+ response profiles?
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HVTN 505 trial examined new antibody boost vaccines

• HIV Vaccine Trials Network’s (HVTN) 505 vaccine efficacy;
randomized controlled trial, n = 2504 (Hammer et al. 2013).

• Question: How would HIV-1 infection risk in week 28 have
changed had vaccine-induced immunogenic response differed?

• Immunogenic response profiles only available for second-phase
sample of n = 189 (Janes et al. 2017) due to cost limitations.

• Two-phased sampling mechanism: 100% inclusion rate if
HIV-1 positive in week 28; based on matching otherwise.
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• Baseline covariates(L): sex, age, BMI, behavioral HIV risk.

• Intervention(s) (A): post-vaccination T-cell activity markers.

• Outcome (Y): HIV-1 infection status at week 28 of tiral.

• 12-color intracellular cytokine staining (ICS) assay.

• Cryopreserved peripheral blood mononuclear cells were stimulated
with synthetic HIV-1 peptide pools.

• All immune responses are assayed after the endpoints of interest
(HIV-1 infection status) are collected.

• Conclusion: Understanding which immune responses impact
vaccine efficacy helps develop more efficacious vaccines.

• A vaccine effective at preventing HIV-1 acquisition would be a
cost-effective and durable approach to halting the worldwide
epidemic.

• Identifying vaccine-induced immune-response biomarkers that
predict a vaccine’s ability to protect individuals from HIV-1 infection
is a high priority.

• The study was halted on 22 April 2013 due to absence of vaccine
efficacy. There was no significant effect of the vaccine on the
primary infection endpoint of HIV-1 infection between week 28 and
month 24.

Two-phase sampling censors the complete data structure

• Complete (unobserved) data X = (L,A,S,Y) ∼ PX
0 ∈ MX, as

per the full HVTN 505 trial cohort (Hammer et al. 2013):

• L (baseline covariates): sex, age, BMI, behavioral HIV risk,

• A (treatment): vaccination status (randomized),

• S (exposure): immune response profile for CD4+ and CD8+,

• Y (outcome of interest): HIV-1 infection status at week 28.

• Observed data O = (C,CX) = (L,C,CS,Y).

• C ∈ {0, 1} indicates inclusion in the second-phase sample.

• Implicitly conditioning on the vaccine arm, i.e., O = X | A = 1.
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• PX
0 — true (unknown) distribution of the full data X,

• MX
NP — nonparametric statistical model.

NPSEM with static interventions

• Use a nonparametric structural equation model (NPSEM) to
describe the generation of X (Pearl 2009), specifically

L = fL(UL);S = fS(L,US);Y = fY(S, L,UY)

• Implies a model for the distribution of counterfactual random
variables generated by interventions on the process.

• A static intervention replaces fS with a specific value s in its
conditional support S | A = 1, L.

• This requires specifying a particular value of the exposure
under which to evaluate the outcome a priori.
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NPSEM with stochastic interventions

• Stochastic interventions modify the value S would naturally
assume by drawing from a modified exposure distribution.

• Consider the post-intervention value S⋆ ∼ G⋆(· | L); static
interventions are a special case (degenerate distribution).

• Such an intervention generates a counterfactual random
variable YG⋆ := fY(S⋆, L,UY), with distribution Pδ

0, .

• We aim to estimate ψ0,δ := EPδ
0
{YG⋆}, the counterfactual

mean under the post-intervention exposure distribution G⋆.
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Stochastic interventions for the causal effects of shifts

• Díaz and van der Laan (2012; 2018)’s stochastic interventions

d(s, l) =





s + δ, s + δ < u(l) (if plausible)
s, s + δ ≥ u(l) (otherwise)

• Our estimand is ψ0,d := EPd
0
{Yd(S,L)}, mean of Yd(S,L).

• Statistical target parameter is Ψ(PX
0 ) = EPX

0
Q(d(S, L), L),

counterfactual mean of the shifted outcome mechanism.

• For HVTN 505, ψ0,d is the counterfactual risk of HIV-1
infection, had the observed value of the immune response
been altered under the rule d(S, L) defining G⋆(· | L).
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• Causal estimand: counterfactual mean of HIV-1 infection (risk)
under a shifted immunogenic response distribution.

From the causal to the statistical target parameter

Assumption 1: Stable Unit Treatment Value (SUTVA)
• Yd(si,li)

i does not depend on d(sj, lj) for i = 1, . . . , n and
j ̸= i, or lack of interference (Rubin 1978; 1980)

• Yd(si,li)
i = Yi in the event Si = d(si, li), for i = 1, . . . , n

Assumption 2: Ignorability

Si ⊥⊥ Yd(si,li)
i | Li, for i = 1, . . . , n

Assumption 3: Positivity

si ∈ S =⇒ d(si, li) ∈ S for all l ∈ L, where S denotes the
support of S conditional on L = li for all i = 1, . . . n 7



• This positivity assumption is not quite the same as that required for
categorical interventions.

• In particular, we do not require that the intervention density place
mass across all strata defined by L.

• Rather, we merely require the post-intervention quantity be seen in
the observed data for given si ∈ S and li ∈ L.

Literature: Díaz and van der Laan (2012)

• Proposal: Evaluate outcome under an altered intervention
distribution — e.g., Pδ(g0)(S = s | L) = g0(s − δ(L) | L).

• Identification conditions for a statistical parameter of the
counterfactual outcome ψ0,d under such an intervention.

• Show that the causal quantity of interest E0{Yd(S,L)} is
identified by a functional of the distribution of X:

ψ0,d =

∫

L

∫

S
EPX

0
{Y | S = d(s, l), L = l}·

qX
0,S(s | L = l) · qX

0,L(l)dµ(s)dν(l)

• Provides a derivation based on the efficient influence function
(EIF) with respect to the nonparametric model M.
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• The identification result allows us to write down the causal quantity
of interest in terms of a functional of the observed data.

• Key innovation: loosening standard assumptions through a change
in the observed intervention mechanism.

• Problem: globally altering an intervention mechanism does not
necessarily respect individual characteristics.

• The authors build IPW, one-step, and TML estimators, comparing
the three different approaches.
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Flexible, efficient estimation

• The efficient influence function (EIF) is:

D(PX
0 )(x) = H(s, l)(y − Q(s, l)) + Q(d(s, l), l)−Ψ(PX

0 ).

• The one-step estimator corrects bias by adding the empirical
mean of the estimated EIF to the substitution estimator:

Ψ+
n =

1
n

n∑

i=1
Qn(d(Si, Li), Li) + Dn(Oi).

• The TML estimator updates initial estimates of Qn by tilting:

Ψ⋆
n =

1
n

n∑

i=1
Q⋆

n(d(Si, Li), Li).

• Both estimators are doubly robust.
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• Both estimators are CAN even when nuisance parameters are
estimated via flexible, machine learning techniques.

• Semiparametric-efficient estimation thru solving efficient influence
function estimating equation wrt the model M.

• The auxiliary covariate simplifies when the treatment is in the limits
(conditional on W) — i.e., for Si ∈ (u(l)− δ, u(l)), then we have
H(s, l) = g0(s−δ|l)

g0(s|l) + 1.

• Need to explicitly remind the audience what u(l) is again. It’s only
appeared once at this point, and only been mentioned in passing.

Augmented estimators for two-phase sampling designs

• Rose and van der Laan (2011) introduce the IPCW-TMLE, to
be used when observed data is subject to two-phase sampling.

• Initial proposal: correct for two-phase sampling by using a loss
function with inverse probability of censoring weights:

L(PX
0 )(O) =

C
π0(Y, L)

LF(PX
0 )(X)

• When the sampling mechanism π0(Y, L) can be estimated by
a parametric form, this procedure yields an efficient estimator.

• However, when machine learning is used (e.g., when π0(Y, L)
is not known by design), this is insufficient.
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Efficient estimation and multiple robustness

• Then, the IPCW augmentation must be applied to the EIF:

D(PX
0 )(o) =

c
π0(y, l)

DF(PX
0 )(x)−

(
1 − c

π0(y, l)

)
·

E(DF(PX
0 )(x) | C = 1,Y = y, L = l),

• Expresses observed data EIF DF(PX
0 )(o) in terms of full data

EIF DF(PX
0 )(x); inclusion of second term ensures efficiency.

• The expectation of the full data EIF DF(PX
0 )(x), taken only

over units selected by the sampling mechanism (i.e., C = 1).

• A unique multiple robustness property — combinations of
(g0(L),Q0(S, L))× (π0(Y, L),E(DF(PX

0 )(x) | C = 1,Y, L)).
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Fighting the HIV-1 epidemic with preventive vaccines
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Figure 1: Analysis of HIV-1 risk as a function of CD8+ immunogenicity,
using R package txshift (https://github.com/nhejazi/txshift).
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Big picture takeaways

• Vaccine efficacy evaluation helps to develop enhanced vaccines
better informed by biological properties of the target disease.

• HIV-1 vaccines modulate immunogenic response profiles as
part of their mechanism for lowering HIV-1 infection risk.

• Stochastic interventions constitute a flexible framework for
considering realistic treatment/intervention policies.

• Large-scale (vaccine) trials often use two-phase designs —
need to (carefully!) accommodate for sampling complications.

• We’ve developed robust, open source statistical software for
assessing stochastic interventions in observational studies.
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Thank you!

https://nimahejazi.org

https://twitter.com/nshejazi

https://github.com/nhejazi

https://doi.org/10.1111/biom.13375
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At Warp Speed – COVID-19 Vaccine Trials

15

COVID-19 Vaccine Development

• Nucleic acid vaccines: Moderna (mRNA), Pfizer (mRNA)

• Viral-vectored vaccines: AstraZeneca (chimpanzee
adenovirus), Janssen (human adenovirus)

• Subunit vaccines: NovaVax, Sanofi / GlaxoSmithKline

• Weakened/inactivated vaccines: Sinopharm, Sinovac
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• Nucleic acid vaccines have never been approved before, but are
quick to manufacture.

• Viral-vectored vaccines are also quick to manufacture but can
develop immunity against vector.

• Subunit vaccines are a construct of several effective vaccines, but
are slower to manufacture and often require an adjuvant.

Operation Warp Speed (OWS)

• Do we have the time? Polio (7 years), Measles (9 years),
Chickenpox (34 years), Mumps (4 years), HPV (15 years).

• OWS: “300M doses of safe, effective vaccine by 01 Jan. 2021”.

• How? Typical process timeline (73 months) replaced by an
accelerated process of 14 months.

• COVID-19 Prevention Network (CoVPN):
• formed by NIAID to establish a unified clinical trial network for

evaluating vaccines and monoclonal antibodies.
• Statisticians: primary trial design/analysis, sequential efficacy

monitoring, safety monitoring, immune correlates.
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Immune Correlates of Protection (Plotkin and Gilbert 2012)

• Correlate of Protection (CoP): immune marker statistically
predictive of vaccine efficacy, not necessarily mechanistic.

• Mechanistic CoP (mCoP): immune marker that is causally
and mechanistically responsible for protection.

• Nonmechanistic CoP (nCoP): immune marker that is
predictive but not a causal agent of protection.

• A CoP is a candidate surrogate endpoint (Prentice 1989) —
primary endpoint in future trials if reliably predictive.
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Measuring Correlates: Two-Phase Designs

• Running assays on > 30, 000 blood draws is timely, expensive,
and, as it turns out, statistically unnecessary.

• Instead we measure immune responses via a case-cohort
design (Prentice 1986):

• a stratified random subcohort (≈ 1600 individuals)
• all SARS-CoV-2 and COVID endpoints.

• Case-cohort designs are a special case of two-phase
sampling (Breslow et al. 2003; 2009):

• Phase 1: measure baseline, vaccine, endpoint on everyone.
• Phase 2: given baseline, vaccine, endpoint, select members of

immune response subcohort with (possibly known) probability.
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Stochastic–Interventional Vaccine Efficacy

• Causal parameter based on vaccine efficacy (VE) estimands:

SVE(δ) = 1−E[P(Y = 1 | A = 1,S = s + δ, L = l) | A = 1, L]
P(Y(0) = 1) .

• P(Y(0) = 1): counterfactual infection risk in the placebo arm
— under randomization, P(Y(0) = 1) = P(Y = 1 | A = 0).

• Summarizes VE thru stochastic interventions indexed by δ.

• Further details in CoVPN’s public immune correlates SAP at
https://doi.org/10.6084/m9.figshare.13198595.
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Additional Complexities of Two-Phase Designs

• Observed data structure: O = (L,A,Z,CS,Y,C)
• A ∈ {0, 1}: randomized vaccination assignment
• Z: post-vaccination confounder (e.g., unblinded risky behavior)
• S: candidate mCoPs (causal mediators)
• Y: symptomatic SARS-CoV-2 infection
• C := f(Y, L): selection into second-phase sample

• But what about O = (L,A,Z,CS,∆, T̃,C)?
• T̃ = min(TF,TC): possibly right-censored time to infection
• ∆ = I(TF < TC): symptomatic SARS-CoV-2 infection
• Can C still be a function of T̃?
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• Goal: assess indirect effect of vaccination through mCoPs.

• Define/identify new mCoPs to be used as surrogate endpoints.

• Could also have missing outcome in the binary endpoint case.

Causal Mediation Analysis: Explanation and Mechanism

• Identification assumptions:
• A1: No unmeasured confounding of {A,Y} relationship.
• A2: No unmeasured confounding of {S,Y} relationship.
• A3: No unmeasured confounding of {A,S} relationship.
• A4: No {S,Y} confounder affected by A, i.e., no Z.

• Indirect effects: thru pathways involving candidate mCoPs.
• Natural (in)direct effects (Robins and Greenland 1992, Pearl

2013): binary A and S, no Z, “cross-world” independence.
• Stochastic (in)direct effects (Díaz and Hejazi 2020):

continuous A and S, no Z; no “cross-world” exclusion.
• Interventional (in)direct effects (Díaz et al. 2020): binary A,

continuous S, Z OK, no “cross-world” exclusion.
• Stochastic interventional (in)direct effects (Hejazi et al. 2020):

continuous A and S, Z ok, no “cross-world” exclusion.
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• A1, A3 hold in randomized trials.

• A2 may not hold: include all mutual {S,Y} predictors, then perform
sensitivity analysis.

• A4 usually doesn’t hold: either measure S right after A or develop
more flexible effect definitions.

• “Cross-world” independence: Y(a, s) ⊥ S(a′) ∀s; untestable in
RCTs

• Extensions for two-phase sampling?

Appendix



Literature: Haneuse and Rotnitzky (2013)

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(s | l) =
J(l)∑

j=1
Iδ,j{hj(s, l), l}g0{hj(s, l) | l}h′

j(s, l)

• Such intervention policies account for the natural value of the
intervention S directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Identification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).

• Shifts of the form d(S, L) are considerably more interesting since
these are realistic intervention policies.

• Example: consider an individual with an extremely high immune
response but whose baseline covariates L suggest we shift the
response still higher. Such a shift may not be biologically plausible
(impossible, even) but we cannot account for this if the shift is only
a function of L.

• The authors build IPW, outcome regression, and non-iterative
doubly robust estimators, as well as an approach based on MSMs.

• Piecewise smooth invertibility: This assumption ensures that we can
use the change of variable formula when computing integrals over S
and it is useful to study the estimators that we propose in this paper.



Literature: Young et al. (2014)

• Establishes equivalence between g-formula when proposed
intervention depends on natural value and when it does not.

• This equivalence leads to a sufficient positivity condition for
estimating the counterfactual mean under MTPs via the same
statistical functional studied in Díaz and van der Laan (2012).

• Extends earlier identification results, providing a way to use
the same statistical functional to assess EYd(S,L) or EYd(L).

• The authors also consider limits on implementing shifts
d(S, L), and address working in a longitudinal setting.



Literature: Díaz and van der Laan (2018)

• Builds on the original proposal, accomodating MTP-type
shifts d(S, L) proposed after their earlier work.

• To protect against positivity violations, considers a specific
shifting mechanism:

d(s, l) =





s + δ, s + δ < u(l)
s, otherwise

• Proposes an improved TMLE algorithm, with a single auxiliary
covariate for constructing the TML estimator.



Nonparametric conditional density estimation

• To compute the auxiliary covariate H(s, l), we need to
estimate conditional densities g(S | L) and g(S − δ | L).

• There is a rich literature on density estimation, we follow the
approach proposed in Díaz and van der Laan (2011).

• To build a conditional density estimator, consider

gn,α(s | L) = P(S ∈ [αt−1, αt) | L)
αt − αt−1

,

for αt−1 ≤ s < αt.
• This is a classification problem, where we estimate the

probability that a value of S falls in a bin [αt−1, αt).
• The choice of the tuning parameter t corresponds roughly to

the choice of bandwidth in classical kernel density estimation.



Nonparametric conditional density estimation

• Díaz and van der Laan (2011) propose a reformulation of this
classification approach as a set of hazard regressions.

• To effectively employ this proposed reformulation, consider

P(S ∈ [αt−1, αt) | L) =P(S ∈ [αt−1, αt) | S ≥ αt−1, L)×
Πt−1

j=1{1 − P(S ∈ [αj−1, αj) | S ≥ αj−1, L)}

• The likelihood of this model may be expressed to correspond
to the likelihood of a binary variable in a data set expressed via
a long-form repeated measures structure.

• Specifically, the observation of Xi is repeated as many times as
intervals [αt−1, αt) are before the interval to which Si belongs,
and the binary variables indicating Si ∈ [αt−1, αt) are recorded.



Density estimation with the Super Learner algorithm

• To estimate g(S | L) and g(S − δ | L), use a pooled hazard
regression, spanning the support of S.

• We rely on the Super Learner algorithm of van der Laan et al.
(2007) to build an ensemble learner that optimally weights
each of the proposed regressions, using cross-validation (CV).

• The Super Learner algorithm uses V-fold CV to train each
proposed regression model, weighting each by the inverse of
its average risk across all V holdout sets.

• By using a library of regression estimators, we invoke the result
of van der Laan et al. (2004), who prove this likelihood-based
cross-validated estimator to be asymptotically optimal.

• The auxiliary covariate simplifies when the treatment is in the limits
(conditional on L) — i.e., for Si ∈ (u(l)− δ, u(l)), then we have
H(s, l) = g0(s−δ|l)

g0(s|l) + 1.

• Asymptotically optimal in the sense that it performs as well as the
oracle selector as the sample size increases.



Key properties of TML estimators

• Asymptotic linearity:

Ψ(P⋆
n)−Ψ(PX

0 ) =
1
n

n∑

i=1
D(PX

0 )(Xi) + oP

(
1√
n

)

• Gaussian limiting distribution:
√

n(Ψ(P⋆
n)−Ψ(PX

0 )) → N(0,Var(D(PX
0 )(X)))

• Statistical inference:

Wald-type confidence interval : Ψ(P⋆
n)± z1−α

2
· σn√

n ,

where σ2
n is computed directly via σ2

n = 1
n
∑n

i=1 D2(·)(Xi).

Under the additional condition that the remainder term R(P̂⋆,P0) decays as
oP

(
1√n

)
, we have that Ψn−Ψ0 = (Pn−P0) ·D(P0)+oP

(
1√n

)
, which, by

a central limit theorem, establishes a Gaussian limiting distribution for the
estimator, with variance V(D(P0)), the variance of the efficient influence
function when Ψ admits an asymptotically linear representation.
The above implies that Ψn is a

√
n-consistent estimator of Ψ, that it is

asymptotically normal (as given above), and that it is locally efficient. This
allows us to build Wald-type confidence intervals, where σ2

n is an estimator
of V(D(P0)). The estimator σ2

n may be obtained using the bootstrap or
computed directly via σ2

n = 1
n
∑n

i=1 D2(Q̄⋆
n, gn)(Oi)

We obtain semiparametric-efficient estimation and robust inference in the
nonparametric model M by solving the efficient influence function.

1. If D(Q̄⋆
n, gn) converges to D(P0) in L2(P0) norm.

2. The size of the class of functions Q̄⋆
n and gn is bounded (technically,

∃F s.t. D(Q̄⋆
n, gn) ∈ F w.h.p., where F is a Donsker class)



Algorithm for TML estimation

1. Construct initial estimators gn of g0(S, L) and Qn of Q0(S, L),
perhaps using data-adaptive regression techniques.

2. For each observation i, compute an estimate Hn(si, li) of the
auxiliary covariate H(si, li).

3. Estimate the parameter ϵ in the logistic regression model

logitQϵ,n(s, l) = logitQn(s, l) + ϵHn(s, l),

or an alternative regression model incorporating weights.

4. Compute TML estimator Ψn of the target parameter, defining
update Q⋆

n of the initial estimate Qn,ϵn :

Ψn = Ψ(P⋆
n) =

1
n

n∑

i=1
Q⋆

n(d(Si, Li), Li).

• We recommend using nonparametric methods for the initial
estimators, as consistent estimation is necessary for efficiency of the
estimator Ψn.

• Intuition for the submodel fluctuation?



Algorithm for IPCW-TML estimation

1. Using all observed units (X), estimate sampling mechanism
π(Y, L), perhaps using data-adaptive regression methods.

2. Using only observed units in the second-stage sample C = 1,
construct initial estimators gn(S, L) and Qn(S, L), weighting
by the sampling mechanism estimate πn(Y, L).

3. With the approach described for the full data case, compute
Hn(si, li), and fluctuate submodel via logistic regression.

4. Compute IPCW-TML estimator Ψn of the target parameter,
by solving the IPCW-augmented EIF estimating equation.

5. Iteratively update estimated sampling weights πn(Y, L) and
IPCW-augmented EIF, updating TML estimate in each
iteration, until 1

n
∑n

i=1 EIFi <
1
n .

• We recommend using nonparametric methods for the initial
estimators, as consistent estimation is necessary for efficiency of the
estimator Ψn.

• Intuition for the submodel fluctuation?

• This process includes the use of HAL to fit the regression of the EIF
contributions on the sampling node {Y, L}.



Identifying the best efficient estimator
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Figure 2: Relative performance of reweighted and augmented estimators.



A linear modeling perspective

• Briefly consider a simple data structure: X = (Y,S); we seek
to model the outcome Y as a function of S.

• To posit a linear model, consider Yi = β0 + β1Si + ϵi, with
error ϵi ∼ N(0, 1).

• Letting δ be a change in S, YS+δ − YS may be expressed

EYS+δ − EYS = [β0 + β1(ES + δ)]− [β0 + β1(ES)]
= β0 − β0 + β1ES − β1ES + β1δ

= β1δ

• Thus, a unit shift in S (i.e., δ = 1) may be seen as inducing a
change in the difference in outcomes of magnitude β1.

• We extend this result to the mean counterfactual outcomes under
the nonparametric model M.



A causal inference perspective

• Consider a data structure: (Ys, s ∈ S).

• To posit a linear model, let Ys = β0 + β1s + ϵs for s ∈ S, with
error ϵs ∼ N(0, σ2

s ) ∀s ∈ S.

• For the counterfactual outcomes (Ys′+δ,Ys′), their difference,
Ys′+δ − Ys′ , for some s′ ∈ S, may be expressed

EYs′+δ − EYs′ = [β0 + β1(s′ + δ) + Eϵs′+δ]− [β0 + β1s′ + Eϵs′ ]

= β1δ

• Thus, a unit shift for s′ ∈ S (i.e., δ = 1) may be seen as
inducing a change in the difference in the counterfactual
outcomes of magnitude β1.

• Note that this analysis is exactly what we’re told we cannot do in
“linear models 101” — that is, the slope of a regression line cannot
be interpreted as causing a change in the outcome.

• We extend this result to the mean counterfactual outcomes under
the nonparametric model M.



Slope in a semiparametric model

• Consider the stochastic intervention g⋆(· | L):

EYg⋆ =

∫

L

∫

s
E(Y | S = s, L)g(s − δ | L) · ds · dP0(L)

=

∫

L

∫

z
E(Y | S = z + δ, L)g(z | L) · dz · dP0(L),

defning the change of variable z = s − δ.

• For a semiparametric model, E(Y | S = z, L) = βz + θ(L):

EYg⋆ − EY =

∫

L

∫

z
[E(Y | S = z + δ, L)− E(Y | S = z, L)]
g(z | L) · dz · dP0(L)

= [β(z + δ) + θ(L)]− [βz + θ(L)]
= βδ
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