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Motivating example

The observed data unit is O := (W,A,Y) ∼ P0 ∈ M:

• W ∈ Rd is a vector of baseline covariates;
• A ∈ R is a continuous-valued exposure; and
• Y ∈ R is an outcome of interest.

Let M be a large semiparametric model and for each P ∈ M,
define the population intervention effect (PIE) as

Ψδ(P) := EP{Y(Aδ)− Y} ,

where Aδ arises from a stochastic intervention.



NPSEM with static interventions

• Use a nonparametric structural equation model (NPSEM) to
describe the generation of O (Pearl 2009), specifically

W = fW(UW);A = fA(W,UA);Y = fY(A,W,UY)

• Implies a model for the distribution of counterfactual random
variables generated by interventions on the process.

• A static intervention replaces fA with a specific value a in its
conditional support A | W.

• This requires specifying a particular value of the exposure
under which to evaluate the outcome a priori.

NPSEM with stochastic interventions

• Stochastic interventions modify the value A would naturally
assume by drawing from a modified exposure distribution.

• Consider the post-intervention value Aδ ∼ Gδ(· | W); static
interventions are a special case (degenerate distribution).

• Such an intervention generates a counterfactual RV
YGδ

:= fY(Aδ,W,UY), with distribution Pδ
0.

• We aim to estimate ψ0,δ := EPδ
0
{YGδ

}, the counterfactual
mean under the post-intervention exposure distribution Gδ.



Stochastic interventions for the causal effects of shifts

• Díaz and van der Laan (2012; 2018)’s stochastic interventions

δ(a,w) =





a + δ, a + δ < u(w) (if plausible)
a, a + δ ≥ u(w) (otherwise)

• Haneuse and Rotnitzky (2013): modified treatment policies

• Evaluate outcome under modified intervention distribution:
Pδ(g0,A)(A = a | W) = g0,A(δ−1(A,W) | W).

• Díaz and van der Laan (2018) show that ψ0,δ is identified by a
functional of the distribution of O:

ψ0,δ =

∫

W

∫

A
EP0{Y | A = δ(a,w),W = w}·

g0,A(a | W = w) · q0,W(w)dµ(a)dν(w)

Estimation of the PIE

An estimator ψn of ψ0 := Ψ(P0) is efficient if and only if

ψn − ψ0 = n−1
n∑

i=1
D⋆(P0)(Oi) + oP(n−1/2) ,

where D⋆(P) is the efficient influence function (EIF) of Ψδ with
respect to the model M at P.

The EIF of Ψ is indexed by two key nuisance parameters

QP,Y(A,W) := EP(Y | A,W) outcome mechanism
gP,A(A,W) := p(A | W) generalized propensity score



Estimation of a counterfactual mean

We’ll rely on empirical process notation throughout:

• P0f = EP0{f(O)} =
∫

f (o)dP(o)
• Pnf = EPn{f(O)} = n−1 ∑n

i=1 f (Oi)

We can estimate the counterfactual mean Ψδ(P), using the inverse
probability weighted (IPW) estimator

ψδ,n = n−1
n∑

i=1

gn,A(δ−1(Ai,Wi) | Wi)

gn,A(Ai | Wi)
Yi.

Why IPW estimators?

• IPW estimators are the oldest class of causal effect estimators.

• IPW estimators are still very commonly used in practice today.

• Easy to implement and appropriate in many settings, but...
1. requires a correctly specified estimate of the propensity score;
2. can be inefficient, never attaining the efficiency bound; and
3. suffers from an (asymptotic) curse of dimensionality.



IPW estimators

The IPW estimator Ψδ(Pn, gn,A) is a solution to the score equation
DIPW(O; Ψδ) =

(gn,A(δ−1(Ai,Wi)|Wi)
gn,A(Ai|Wi))

Y −Ψ(P):

Ψδ(Pn, gn,A) = n−1
n∑

i=1

gn,A(δ−1(Ai,Wi) | Wi)

gn,A(Ai | Wi)
Yi.

• Consistency and convergence rate of IPW relies on those same
properties of the generalized propensity score estimator gn,A.

• Generally, finite-dimensional (i.e., parametric) models are not
flexible enough to consistently estimate g0,A.

Nonparametric conditional density estimation

• Our IPW estimator require the generalized propensity score,
at both gA(A | W) and gA(δ−1(A,W) | W).

• There is a rich literature on density estimation, we follow the
approach first explored in Díaz and van der Laan (2011).

• To build a conditional density estimator, consider

gn,A,α(A | W) =
P(A ∈ [αt−1, αt) | W)

|αt − αt−1|
.

• This is a classification problem, where we estimate the
probability that a value of A falls in a bin [αt−1, αt).

• The choice of the tuning parameter t corresponds roughly to
the choice of bandwidth in classical kernel density estimation.



Nonparametric conditional density estimation

• Díaz and van der Laan (2011) propose a reformulation of this
classification approach as a set of hazard regressions.

• To effectively employ this proposed reformulation, consider

P(A ∈ [αt−1, αt) | W) =P(A ∈ [αt−1, αt) | A ≥ αt−1,W)×
Πt−1

j=1{1 − P(A ∈ [αj−1, αj) | A ≥ αj−1,W)}

• Likelihood may be re-expressed as the likelihood of a binary
variable in a repeated measures data structure.

• Specifically, the observation of Oi is repeated as many times as
intervals [αt−1, αt) are prior to the interval to which Ai falls,
and the indicator variables Ai ∈ [αt−1, αt) are recorded.

Curse of dimensionality

Goal: Construct nuisance parameter estimators that are consistent
and converge faster than n−1/4 under minimal assumptions.

Challenging for moderately large d, i.e., curse of dimensionality.

For example, consider kernel regression with bandwidth h and
kernels orthogonal to polynomials in W of degree k.

• Assume parameter is k times differentiable.
• Optimal bandwidth O(n−1/(2k+d))

• Optimal convergence rate O(n−k/(2k+d))



Curse of dimensionality

Broadly, two approaches for handling the curse of dimensionality.

1. Enforce fairly strong smoothness assumptions on the model
space (e.g., Hirano et al. 2003).

• No general guarantee of consistency

2. Ensemble machine learning, e.g., Super Learning (van der
Laan et al. 2007).

• No guarantee of n−1/4 convergence rates

An important class of functions

Consider space of cadlag functions with finite variation norm.

Def. cadlag = left-hand continuous with right-hand limits

Variation norm Let θs(u) = θ(us, 0sc) be the section of θ that sets
the coordinates in s equal to zero.

The variation norm of θ can be written:

|θ|v =
∑

s⊂{1,...,d}

∫
| dθs(us) |,

where xs = (x(j) : j ∈ s) and the sum is over all subsets.



Variation norm

We can represent the function θ as

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∫
I(xs ≥ us)dθs(us),

For discrete measures dθs with support points {us,j : j} we get a
linear combination of indicator basis functions:

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∑

j
βs,jθus,j(x),

where βs,j = dθs(us,j), θus,j(x) = I(xs ≥ us,j), and

|θ|v = θ(0) +
∑

s⊂{1,...,d}

∑

j
|βs,j|.
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Convergence rate of HAL

We have, for α(d) = 1/(d + 1),

|θn,M − θ0,M|P0 = oP(n−(1/4+α(d)/8)).

Thus, if we select M > |θ0|v, then

|θn,M − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Due to oracle inequality for the cross-validation selector Mn,

|θn,Mn − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Improved convergence rate (Bibaut and van der Laan 2019):

|θn,Mn − θ0|P0 = oP(n−1/3 log(n)d/2) .

HAL estimate of g0,A

If the nuisance functional g0,A is cadlag with finite sectional
variation norm, logit g can be expressed (Gill et al. 1995):

logit gβ = β0 +
∑

s⊂{1,...,d}

n∑

i=1
βs,iϕs,i,

where ϕs,i is an indicator basis function.

The loss-based HAL estimator βn may then be defined as

βn,λ = argmin
β:|β0|+

∑
s⊂{1,...,d}

∑n
i=1|βs,i|<λ

PnL(logit gβ),

where L(·) is an appropriate loss function.
Denote by gn,λ ≡ gβn,λ the HAL estimate of g0,A.



Targeted selection of λn for IPW estimation

1. CV-based: choose λn as cross-validated empirical minimizer of
negative log-density loss (Dudoit and van der Laan 2005):

L(·) = − log(gn,A,λ(A | W)).

n.b., “targeted” but incorrect tradeoff (gn,A,λ instead of ψn,δ).

2. EIF-based: choose λn to solve the EIF estimating equation:

λn = argmin
λ

|PnDCAR(gn,A,λ,Qn,Y)|,

where Qn,Y is an estimate of Q0,Y and D⋆ = DIPW − DCAR.

Agnostic selection of λn for IPW estimation

What if we dispensed with criteria based on ψn,δ altogether?

1. Plateau-based: choose λn as the first in λ1, . . . , λK s.t.

|ψn,λj+1 − ψn,λj |K−1
j=1 ≤ Z(1−α/2)[σn,λj+1 − σn,λj ]

K−1
j=1 ,

where σn,λj is a variance estimate at λj.

2. Plateau-based: choose λn as the first in λ1, . . . , λK s.t.
[ |ψn,λj+1 − ψn,λj |
maxj|ψn,λj+1 − ψn,λj |

]K−1

j=1
≤ τ

for an arbitrary tolerance level τ .



Simulation results: scaled bias

0.0

0.1

0.2

0.3

0.4

100 200 500

Sample size

n
×

 |ψ
−

ψ̂
|

|Pn D_CAR| <= SE(D*)/log(n)

|Pn D_CAR| minimizer

Global CV

Plateau − Lepski

Plateau − Psi (tol=0.01)

Plateau − Psi (tol=0.2)

Scaled bias of IPW estimators

Simulation results: relative MSE
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The big picture

1. Unlike classical IPW estimators, ours avoid the asymptotic
curse of dimensionality and are asymptotically efficient;

2. Our approach leverages flexible conditional density estimation
for initial generalized propensity score estimates; and

3. In contrast with doubly robust estimators, our estimators can
be formulated without the form of the EIF.

4. Check out the R packages that make this possible
• hal9001: https://github.com/tlverse/hal9001

• haldensify: https://github.com/nhejazi/haldensify

Thank you!

https://nimahejazi.org

https://twitter.com/nshejazi

https://github.com/nhejazi

Manuscript coming soon — stay tuned!



Appendix

From the causal to the statistical target parameter

Assumption 1: Stable Unit Treatment Value (SUTVA)
• Yδ(ai,wi)

i does not depend on δ(aj,wj) for i = 1, . . . , n
and j ̸= i, or lack of interference (Rubin 1978; 1980)

• Yδ(ai,wi)
i = Yi in the event Ai = δ(ai,wi), i = 1, . . . , n

Assumption 2: Ignorability

Ai ⊥⊥ Yδ(ai,wi)
i | Wi, for i = 1, . . . , n

Assumption 3: Positivity

ai ∈ A =⇒ δ(ai,wi) ∈ A for all w ∈ W, where A denotes
the support of A conditional on W = wi for all i = 1, . . . n
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Literature: Haneuse and Rotnitzky (2013)

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(a | w) =
J(w)∑

j=1
Iδ,j{hj(a,w), l}g0{hj(a,w) | l}h′

j(a,w)

• Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Identification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).

Literature: Young et al. (2014)

• Establishes equivalence between g-formula when proposed
intervention depends on natural value and when it does not.

• This equivalence leads to a sufficient positivity condition for
estimating the counterfactual mean under MTPs via the same
statistical functional studied in Díaz and van der Laan (2012).

• Extends earlier identification results, providing a way to use
the same statistical functional to assess EYδ(A,W) or EYδ(W).

• The authors also consider limits on implementing shifts
δ(A,W), and address working in a longitudinal setting.



Literature: Díaz and van der Laan (2018)

• Builds on the original proposal, accomodating MTP-type
shifts δ(A,W) proposed after their earlier work.

• To protect against positivity violations, considers a specific
shifting mechanism:

δ(a,w) =





a + δ, a + δ < u(w)
a, otherwise

• Proposes an improved TMLE algorithm, with a single auxiliary
covariate for constructing the TML estimator.
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