Efficient estimation of modified treatment policy effects based on the generalized propensity score

Nima Hejazi

Wednesday, 17 November 2021

Division of Biostatistics
Department of Population Health Sciences
Weill Cornell Medicine

@nshejazi
O nhejazi
/reference/nimahejazi.org
with M. van der Laan, I. Díaz, & D. Benkeser
Causal Inference Learning Group, Columbia University

Motivating example

The observed data unit is \(O := (W, A, Y) \sim P_0 \in \mathcal{M} \):

- \(W \in \mathbb{R}^d \) is a vector of baseline covariates;
- \(A \in \mathbb{R} \) is a continuous-valued exposure; and
- \(Y \in \mathbb{R} \) is an outcome of interest.

Let \(\mathcal{M} \) be a large semiparametric model and for each \(P \in \mathcal{M} \), define the population intervention effect (PIE) as

\[
\Psi_\delta(P) := \mathbb{E}_P\{Y(A_\delta) - Y\},
\]

where \(A_\delta \) arises from a stochastic intervention.
NPSEM with static interventions

- Use a nonparametric structural equation model (NPSEM) to describe the generation of O (Pearl 2009), specifically

 $$W = f_W(U_W); A = f_A(W, U_A); Y = f_Y(A, W, U_Y)$$

- Implies a model for the distribution of counterfactual random variables generated by interventions on the process.

- A *static intervention* replaces f_A with a specific value a in its conditional support $A \mid W$.

- This requires specifying a particular value of the exposure under which to evaluate the outcome *a priori*.

NPSEM with stochastic interventions

- *Stochastic interventions* modify the value A would naturally assume by drawing from a modified exposure distribution.

- Consider the post-intervention value $A_\delta \sim G_\delta(\cdot \mid W)$; static interventions are a special case (degenerate distribution).

- Such an intervention generates a counterfactual RV $Y_{G_\delta} := f_Y(A_\delta, W, U_Y)$, with distribution P_0^δ.

- We aim to estimate $\psi_{0,\delta} := \mathbb{E}_{P_0^\delta} \{ Y_{G_\delta} \}$, the counterfactual mean under the post-intervention exposure distribution G_δ.
Stochastic interventions for the causal effects of shifts

- Díaz and van der Laan (2012; 2018)’s stochastic interventions

\[\delta(a, w) = \begin{cases}
 a + \delta, & a + \delta < u(w) \quad \text{(if plausible)} \\
 a, & a + \delta \geq u(w) \quad \text{(otherwise)}
\end{cases} \]

- Haneuse and Rotnitzky (2013): modified treatment policies

- Evaluate outcome under modified intervention distribution:

\[P^\delta(g_{0,A})(A = a \mid W) = g_{0,A}(\delta^{-1}(A, W) \mid W). \]

- Díaz and van der Laan (2018) show that \(\psi_{0,\delta} \) is identified by a functional of the distribution of \(O \):

\[\psi_{0,\delta} = \int_W \int_A E_{P_0}\{Y \mid A = \delta(a, w), W = w\} \cdot
\quad g_{0,A}(a \mid W = w) \cdot q_{0,W}(w) \, d\mu(a) \, d\nu(w) \]

Estimation of the PIE

An estimator \(\psi_n \) of \(\psi_0 := \Psi(P_0) \) is efficient if and only if

\[\psi_n - \psi_0 = n^{-1} \sum_{i=1}^{n} D^*(P_0)(O_i) + o_P(n^{-1/2}), \]

where \(D^*(P) \) is the efficient influence function (EIF) of \(\Psi_\delta \) with respect to the model \(M \) at \(P \).

The EIF of \(\Psi \) is indexed by two key nuisance parameters

\[\overline{Q}_{P,Y}(A, W) := E_P(Y \mid A, W) \quad \text{outcome mechanism} \]
\[g_{P,A}(A, W) := p(A \mid W) \quad \text{generalized propensity score} \]
Estimation of a counterfactual mean

We’ll rely on empirical process notation throughout:

- \(P_0 f = \mathbb{E}_{P_0} \{ f(O) \} = \int f(o) dP(o) \)
- \(P_n f = \mathbb{E}_{P_n} \{ f(O) \} = n^{-1} \sum_{i=1}^n f(O_i) \)

We can estimate the counterfactual mean \(\Psi_\delta(P) \), using the inverse probability weighted (IPW) estimator

\[
\psi_{\delta,n} = n^{-1} \sum_{i=1}^n \frac{g_{n,A}(\delta^{-1}(A_i,W_i) \mid W_i)}{g_{n,A}(A_i \mid W_i)} Y_i .
\]

Why IPW estimators?

- IPW estimators are the oldest class of causal effect estimators.
- IPW estimators are still very commonly used in practice today.
- Easy to implement and appropriate in many settings, but...
 1. requires a correctly specified estimate of the propensity score;
 2. can be inefficient, never attaining the efficiency bound; and
 3. suffers from an (asymptotic) curse of dimensionality.
The IPW estimator $\Psi_\delta(P_n, g_{n, A})$ is a solution to the score equation

$$D_\text{IPW}(O; \Psi_\delta) = \frac{(g_{n, A}(\delta^{-1}(A_i, W_i) | W_i))}{g_{n, A}(A_i | W_i)} Y_i - \Psi(P):$$

$$\Psi_\delta(P_n, g_{n, A}) = n^{-1} \sum_{i=1}^{n} \frac{g_{n, A}(\delta^{-1}(A_i, W_i) | W_i)}{g_{n, A}(A_i | W_i)} Y_i.$$

- Consistency and convergence rate of IPW relies on those same properties of the generalized propensity score estimator $g_{n, A}$.
- Generally, finite-dimensional (i.e., parametric) models are not flexible enough to consistently estimate $g_{0, A}$.

Nonparametric conditional density estimation

- Our IPW estimator require the generalized propensity score, at both $g_A(A | W)$ and $g_A(\delta^{-1}(A, W) | W)$.
- There is a rich literature on density estimation, we follow the approach first explored in Díaz and van der Laan (2011).
- To build a conditional density estimator, consider

$$g_{n, A, \alpha}(A | W) = \frac{\mathbb{P}(A \in [\alpha_{t-1}, \alpha_t) | W)}{|\alpha_t - \alpha_{t-1}|}.$$

- This is a classification problem, where we estimate the probability that a value of A falls in a bin $[\alpha_{t-1}, \alpha_t]$.
- The choice of the tuning parameter t corresponds roughly to the choice of bandwidth in classical kernel density estimation.
Nonparametric conditional density estimation

- Díaz and van der Laan (2011) propose a reformulation of this classification approach as a set of hazard regressions.

- To effectively employ this proposed reformulation, consider

 \[P(A \in [\alpha_{t-1}, \alpha_t] \mid W) = P(A \in [\alpha_{t-1}, \alpha_t] \mid A \geq \alpha_{t-1}, W) \times \prod_{j=1}^{t-1} \{1 - P(A \in [\alpha_{j-1}, \alpha_j] \mid A \geq \alpha_{j-1}, W)\} \]

 - Likelihood may be re-expressed as the likelihood of a binary variable in a repeated measures data structure.
 - Specifically, the observation of \(O_i \) is repeated as many times as intervals \([\alpha_{t-1}, \alpha_t]\) are prior to the interval to which \(A_i \) falls, and the indicator variables \(A_i \in [\alpha_{t-1}, \alpha_t) \) are recorded.

Curse of dimensionality

Goal: Construct nuisance parameter estimators that are consistent and converge faster than \(n^{-1/4} \) under minimal assumptions.

Challenging for moderately large \(d \), i.e., curse of dimensionality.

For example, consider kernel regression with bandwidth \(h \) and kernels orthogonal to polynomials in \(W \) of degree \(k \).

- Assume parameter is \(k \) times differentiable.
- Optimal bandwidth \(O(n^{-1/(2k+d)}) \)
- Optimal convergence rate \(O(n^{-k/(2k+d)}) \)
Curse of dimensionality

Broadly, two approaches for handling the curse of dimensionality.

1. Enforce fairly strong smoothness assumptions on the model space (e.g., Hirano et al. 2003).
 - No general guarantee of consistency

2. Ensemble machine learning, e.g., Super Learning (van der Laan et al. 2007).
 - No guarantee of $n^{-1/4}$ convergence rates

An important class of functions

Consider space of cadlag functions with finite variation norm.

Def. cadlag = left-hand continuous with right-hand limits

Variation norm Let $\theta_s(u) = \theta(u_s, 0_{s^c})$ be the section of θ that sets the coordinates in s equal to zero.

The variation norm of θ can be written:

$$|\theta|_v = \sum_{s \subseteq \{1, \ldots, d\}} \int |d\theta_s(u_s)|,$$

where $x_s = (x(j) : j \in s)$ and the sum is over all subsets.
Variation norm

We can represent the function θ as

$$\theta(x) = \theta(0) + \sum_{s \subset \{1, \ldots, d\}} \int \mathbb{I}(x_s \geq u_s) d\theta_s(u_s),$$

For discrete measures $d\theta_s$ with support points $\{u_{s,j} : j\}$ we get a linear combination of indicator basis functions:

$$\theta(x) = \theta(0) + \sum_{s \subset \{1, \ldots, d\}} \sum_j \beta_{s,j} \theta_{u_{s,j}}(x),$$

where $\beta_{s,j} = d\theta_s(u_{s,j})$, $\theta_{u_{s,j}}(x) = \mathbb{I}(x_s \geq u_{s,j})$, and

$$|\theta|_v = \theta(0) + \sum_{s \subset \{1, \ldots, d\}} \sum_j |\beta_{s,j}|.$$
Convergence rate of HAL

We have, for \(\alpha(d) = \frac{1}{d+1} \),

\[
|\theta_{n,M} - \theta_{0,M}|_{P_0} = o_P(n^{-\left(\frac{1}{4} + \alpha(d)/8\right)}).
\]

Thus, if we select \(M > |\theta_0|_v \), then

\[
|\theta_{n,M} - \theta_0|_{P_0} = o_P(n^{-\left(\frac{1}{4} + \alpha(d)/8\right)}).
\]

Due to oracle inequality for the cross-validation selector \(M_n \),

\[
|\theta_{n,M_n} - \theta_0|_{P_0} = o_P(n^{-\left(\frac{1}{4} + \alpha(d)/8\right)}).
\]

Improved convergence rate (Bibaut and van der Laan 2019):

\[
|\theta_{n,M_n} - \theta_0|_{P_0} = o_P(n^{-\frac{1}{3} \log(n)^{d/2}}).
\]

HAL estimate of \(g_{0,A} \)

If the nuisance functional \(g_{0,A} \) is cadlag with finite sectional variation norm, \(\logit g \) can be expressed (Gill et al. 1995):

\[
\logit g_\beta = \beta_0 + \sum_{s \subset \{1, \ldots, d\}} \sum_{i=1}^n \beta_{s,i} \phi_{s,i},
\]

where \(\phi_{s,i} \) is an indicator basis function.

The loss-based HAL estimator \(\beta_n \) may then be defined as

\[
\beta_{n,\lambda} = \arg \min_{\beta:|\beta_0| + \sum_{s \subset \{1, \ldots, d\}} \sum_{i=1}^n |\beta_{s,i}| < \lambda} P_n \mathcal{L}(\logit g_\beta),
\]

where \(\mathcal{L}(\cdot) \) is an appropriate loss function.

Denote by \(g_{n,\lambda} \equiv g_{\beta_{n,\lambda}} \) the HAL estimate of \(g_{0,A} \).
Targeted selection of λ_n for IPW estimation

1. CV-based: choose λ_n as cross-validated empirical minimizer of negative log-density loss (Dudoit and van der Laan 2005):

$$L(\cdot) = -\log(g_{n,A,\lambda}(A | W)).$$

n.b., “targeted” but incorrect tradeoff ($g_{n,A,\lambda}$ instead of $\psi_{n,\delta}$).

2. EIF-based: choose λ_n to solve the EIF estimating equation:

$$\lambda_n = \arg \min_{\lambda} |P_n D_{\text{CAR}}(g_{n,A,\lambda}, \bar{Q}_n,Y)|,$$

where \bar{Q}_n,Y is an estimate of \bar{Q}_0,Y and $D^* = D_{\text{IPW}} - D_{\text{CAR}}$.

Agnostic selection of λ_n for IPW estimation

What if we dispensed with criteria based on $\psi_{n,\delta}$ altogether?

1. Plateau-based: choose λ_n as the first in $\lambda_1, \ldots, \lambda_K$ s.t.

$$|\psi_{n,\lambda_{j+1}} - \psi_{n,\lambda_j}|^{K-1} \leq Z(1-\alpha/2)[\sigma_{n,\lambda_{j+1}} - \sigma_{n,\lambda_j}]^{K-1},$$

where σ_{n,λ_j} is a variance estimate at λ_j.

2. Plateau-based: choose λ_n as the first in $\lambda_1, \ldots, \lambda_K$ s.t.

$$\left[\frac{|\psi_{n,\lambda_{j+1}} - \psi_{n,\lambda_j}|}{\max_j |\psi_{n,\lambda_{j+1}} - \psi_{n,\lambda_j}|} \right]^{K-1} \leq \tau$$

for an arbitrary tolerance level τ.

The big picture

1. Unlike classical IPW estimators, ours avoid the asymptotic curse of dimensionality and are asymptotically efficient;

2. Our approach leverages flexible conditional density estimation for initial generalized propensity score estimates; and

3. In contrast with doubly robust estimators, our estimators can be formulated without the form of the EIF.

4. Check out the R packages that make this possible
 - hal9001: https://github.com/tlverse/hal9001
 - haldensify: https://github.com/nhejazi/haldensify

Thank you!

https://nimahejazi.org
https://twitter.com/nshejazi
https://github.com/nhejazi
Manuscript coming soon — stay tuned!
From the causal to the statistical target parameter

Assumption 1: Stable Unit Treatment Value (SUTVA)
- \(Y_i^\delta(a_i, w_i) \) does not depend on \(\delta(a_j, w_j) \) for \(i = 1, \ldots, n \) and \(j \neq i \), or lack of interference (Rubin 1978; 1980)
- \(Y_i^\delta(a_i, w_i) = Y_i \) in the event \(A_i = \delta(a_i, w_i) \), \(i = 1, \ldots, n \)

Assumption 2: Ignorability
\(A_i \perp Y_i^\delta(a_i, w_i) \mid W_i, \text{ for } i = 1, \ldots, n \)

Assumption 3: Positivity
\(a_i \in \mathcal{A} \implies \delta(a_i, w_i) \in \mathcal{A} \text{ for all } w \in \mathcal{W}, \text{ where } \mathcal{A} \text{ denotes the support of } A \text{ conditional on } W = w_i \text{ for all } i = 1, \ldots, n \)
\[\psi(0) = 0 \]

\[\psi(1) = \psi(0) + \beta_1 \]

\[\beta_1 = 2 \]
\[\psi(2) = \psi(0) + \beta_1 + \beta_2\]

\[\psi(3) = \psi(0) + \beta_1 + \beta_2 + \beta_3\]
\(\psi(4) = \psi(0) + \beta_1 + \beta_2 + \beta_3 + \beta_4 \)

\(\beta_4 = -1 \)

\(\psi(X) = \psi(0) + \sum_{j=1}^{4} \beta_j I(X > j) \)

\(\| \psi(X) \|_v = \sum_{j=1}^{4} |\beta_j| \)
Literature: Haneuse and Rotnitzky (2013)

- **Proposal:** Characterization of stochastic interventions as *modified treatment policies* (MTPs).

- **Assumption of piecewise smooth invertibility** allows for the intervention distribution of any MTP to be recovered:

 \[
 g_{0,\delta}(a \mid w) = \sum_{j=1}^{J(w)} I_{\delta_j} \{ h_j(a, w) \mid \delta \} g_0 \{ h_j(a, w) \mid \delta \} h_j'(a, w)
 \]

- Such intervention policies account for the natural value of the intervention \(A \) directly yet are interpretable as the imposition of an altered intervention mechanism.

- Identification conditions for assessing the parameter of interest under such interventions appear technically complex (at first).

Literature: Young et al. (2014)

- Establishes equivalence between g-formula when proposed intervention depends on natural value and when it does not.

- This equivalence leads to a sufficient positivity condition for estimating the counterfactual mean under MTPs via the same statistical functional studied in Díaz and van der Laan (2012).

- Extends earlier identification results, providing a way to use the same statistical functional to assess \(\mathbb{E} Y_{\delta(A, W)} \) or \(\mathbb{E} Y_{\delta(W)} \).

- The authors also consider limits on implementing shifts \(\delta(A, W) \), and address working in a longitudinal setting.
Literature: Díaz and van der Laan (2018)

- Builds on the original proposal, accommodating MTP-type shifts $\delta(A, W)$ proposed after their earlier work.

- To protect against positivity violations, considers a specific shifting mechanism:

$$
\delta(a, w) = \begin{cases}
a + \delta, & a + \delta < u(w)
\end{cases}
\begin{cases}
a, & \text{otherwise}
\end{cases}
$$

- Proposes an improved TMLE algorithm, with a single auxiliary covariate for constructing the TML estimator.

References

