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The burden of HIV-1

• The HIV-1 epidemic — the facts:
• now in its fourth decade,
• 2.5 million new infections occurring annually worldwide,
• new infections outpace patients starting antiretroviral therapy.

• Most efficacious preventive vaccine: 31% reduction rate.

• Question: To what extent can HIV-1 vaccines be improved
by modulating immunogenic CD4+/CD8+ response profiles?
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HVTN 505 trial examined new antibody boost vaccines

• HIV Vaccine Trials Network’s (HVTN) 505 vaccine efficacy;
randomized controlled trial, n = 2504 (Hammer et al. 2013).

• Question: How would HIV-1 infection risk in week 28 have
changed had immunogenic response (due to vaccine) differed?

• Immunogenic response profiles only available for second-stage
sample of n = 189 (Janes et al. 2017) due to cost limitations.

• Two-phased sampling mechanism: 100% inclusion rate if
HIV-1 positive in week 28; based on matching otherwise.
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Two-phase sampling censors the complete data structure

• Complete (unobserved) data X = (L,A,Y) ∼ PX
0 ∈ MX, as

per the full HVTN 505 trial cohort (Hammer et al. 2013):

• L (baseline covariates): sex, age, BMI, behavioral HIV risk,

• A (exposure): immune response profile for CD4+ and CD8+,

• Y (outcome of interest): HIV-1 infection status at week 28.

• Observed data O = (C,CX) = (L,C,CA,Y); C ∈ {0, 1} is an
indicator for inclusion in the second-stage sample.
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NPSEM with static interventions

• Use a nonparametric structural equation model (NPSEM) to
describe the generation of X (Pearl 2009), specifically

L = fL(UL);A = fA(L,UA);Y = fY(A, L,UY)

• Implies a model for the distribution of counterfactual random
variables generated by interventions on the process.

• A static intervention replaces fA with a specific value a in its
conditional support A | L.

• This requires specifying a particular value of the exposure
under which to evaluate the outcome a priori.
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NPSEM with stochastic interventions

• Stochastic interventions modify the value A would naturally
assume by drawing from a modified exposure distribution.

• Consider the post-intervention value A⋆ ∼ G⋆(· | L); static
interventions are a special case (degenerate distribution).

• Such an intervention generates a counterfactual random
variable YG⋆ := fY(A⋆, L,UY), with distribution Pδ

0, .

• We aim to estimate ψ0,δ := EPδ
0
{YG⋆}, the counterfactual

mean under the post-intervention exposure distribution G⋆.
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Stochastic interventions for the causal effects of shifts

• Díaz and van der Laan (2012; 2018)’s stochastic interventions

d(a, l) =

a + δ, a + δ < u(l) (if plausible)
a, a + δ ≥ u(l) (otherwise)

• Our estimand is ψ0,d := EPd
0
{Yd(A,L)}, mean of Yd(A,L).

• Statistical target parameter is Ψ(PX
0 ) = EPX

0
Q(d(A, L), L),

counterfactual mean of the shifted outcome mechanism.

• For HVTN 505, ψ0,d is the counterfactual risk of HIV-1
infection, had the observed value of the immune response
been altered under the rule d(A, L) defining G⋆(· | L).
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Flexible, efficient estimation

• The efficient influence function (EIF) is:

D(PX
0 )(x) = H(a, l)(y − Q(a, l)) + Q(d(a, l), l)−Ψ(PX

0 ).

• The one-step estimator corrects bias by adding the empirical
mean of the estimated EIF to the substitution estimator:

Ψ+
n =

1
n

n∑
i=1

Qn(d(Ai, Li), Li) + Dn(Oi).

• The TML estimator is built by updating initial estimates of
Qn via a (logistic) tilting model, yielding

Ψ⋆
n =

1
n

n∑
i=1

Q⋆
n(d(Ai, Li), Li).

• Both estimators are CAN even when nuisance parameters are
estimated via flexible, machine learning techniques.
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Augmented estimators for two-phase sampling designs

• Rose and van der Laan (2011) introduce the IPCW-TMLE, to
be used when observed data is subject to two-phase sampling.

• Initial proposal: correct for two-phase sampling by using a loss
function with inverse probability of censoring weights:

L(PX
0 )(O) =

C
π0(Y, L)

LF(PX
0 )(X)

• When the sampling mechanism π0(Y, L) can be estimated by
a parametric form, this procedure yields an efficient estimator.

• However, when machine learning is used (e.g., when π0(Y, L)
is not known by design), this is insufficient.
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Efficient estimation and multiple robustness

• Then, the IPCW augmentation must be applied to the EIF:

D(PX
0 )(o) =

c
π0(y, l)

DF(PX
0 )(x)−

(
1 − c

π0(y, l)

)
·

E(DF(PX
0 )(x) | C = 1,Y = y, L = l),

• Expresses observed data EIF DF(PX
0 )(o) in terms of full data

EIF DF(PX
0 )(x); inclusion of second term ensures efficiency.

• The expectation of the full data EIF DF(PX
0 )(x), taken only

over units selected by the sampling mechanism (i.e., C = 1).

• A unique multiple robustness property — combinations of
(g0(L),Q0(A, L))× (π0(Y, L),E(DF(PX

0 )(x) | C = 1,Y, L)).
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Helping to fight the HIV-1 epidemic
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Figure 1: Analysis of HIV-1 risk as a function of CD8+ immunogenicity,
using R package txshift (https://github.com/nhejazi/txshift.)
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Big picture takeaways

• Vaccine efficacy evaluation helps to develop enhanced vaccines
better informed by biological properties of the target disease.

• HIV-1 vaccines modulate immunogenic response profiles as
part of their mechanism for lowering HIV-1 infection risk.

• Stochastic interventions constitute a flexible framework for
considering realistic treatment/intervention policies.

• Large-scale (vaccine) trials often use two-phase designs —
need to (carefully!) accommodate for sampling complications.

• We’ve developed robust, open source statistical software for
assessing stochastic interventions in observational studies.
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Thank you!
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Appendix



From the causal to the statistical target parameter

Assumption 1: Consistency

Yd(ai,li)
i = Yi in the event Ai = d(ai, li), for i = 1, . . . , n

Assumption 2: SUTVA

Yd(ai,li)
i does not depend on d(aj, lj) for i = 1, . . . , n and

j ̸= i, or lack of interference (Rubin 1978; 1980)

Assumption 3: Strong ignorability

Ai ⊥⊥ Yd(ai,li)
i | Li, for i = 1, . . . , n



From the causal to the statistical target parameter

Assumption 4: Positivity (or overlap)

ai ∈ A =⇒ d(ai, li) ∈ A for all l ∈ L, where A denotes the
support of A conditional on L = li for all i = 1, . . . n

• This positivity assumption is not quite the same as that
required for categorical interventions.

• In particular, we do not require that the intervention density
place mass across all strata defined by L.

• Rather, we merely require the post-intervention quantity be
seen in the observed data for given ai ∈ A and li ∈ L.



Literature: Díaz and van der Laan (2012)

• Proposal: Evaluate outcome under an altered intervention
distribution — e.g., Pδ(g0)(A = a | L) = g0(a − δ(L) | L).

• Identification conditions for a statistical parameter of the
counterfactual outcome ψ0,d under such an intervention.

• Show that the causal quantity of interest E0{Yd(A,L)} is
identified by a functional of the distribution of X:

ψ0,d =

∫
L

∫
A
EPX

0
{Y | A = d(a, l), L = l}·

qX
0,A(a | L = l) · qX

0,L(l)dµ(a)dν(l)

• Provides a derivation based on the efficient influence function
(EIF) with respect to the nonparametric model M.



Literature: Haneuse and Rotnitzky (2013)

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(a | l) =
J(l)∑
j=1

Iδ,j{hj(a, l), l}g0{hj(a, l) | l}h′
j(a, l)

• Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Identification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).



Literature: Young et al. (2014)

• Establishes equivalence between g-formula when proposed
intervention depends on natural value and when it does not.

• This equivalence leads to a sufficient positivity condition for
estimating the counterfactual mean under MTPs via the same
statistical functional studied in Díaz and van der Laan (2012).

• Extends earlier identification results, providing a way to use
the same statistical functional to assess EYd(A,L) or EYd(L).

• The authors also consider limits on implementing shifts
d(A, L), and address working in a longitudinal setting.



Literature: Díaz and van der Laan (2018)

• Builds on the original proposal, accomodating MTP-type
shifts d(A, L) proposed after their earlier work.

• To protect against positivity violations, considers a specific
shifting mechanism:

d(a, l) =

a + δ, a + δ < u(l)
a, otherwise

• Proposes an improved “1-TMLE” algorithm, with a single
auxiliary covariate for constructing the TML estimator.

• Our (first) contribution: implementation of this algorithm.



Nonparametric conditional density estimation

• To compute the auxiliary covariate H(a, l), we need to
estimate conditional densities g(A | L) and g(A − δ | L).

• There is a rich literature on density estimation, we follow the
approach proposed in Díaz and van der Laan (2011).

• To build a conditional density estimator, consider

gn,α(a | L) = P(A ∈ [αt−1, αt) | L)
αt − αt−1

,

for αt−1 ≤ a < αt.
• This is a classification problem, where we estimate the

probability that a value of A falls in a bin [αt−1, αt).
• The choice of the tuning parameter t corresponds roughly to

the choice of bandwidth in classical kernel density estimation.



Nonparametric conditional density estimation

• Díaz and van der Laan (2011) propose a re-formulation of this
classification approach as a set of hazard regressions.

• To effectively employ this proposed re-formulation, consider

P(A ∈ [αt−1, αt) | L) =P(A ∈ [αt−1, αt) | A ≥ αt−1, L)×
Πt−1

j=1{1 − P(A ∈ [αj−1, αj) | A ≥ αj−1, L)}

• The likelihood of this model may be expressed to correspond
to the likelihood of a binary variable in a data set expressed via
a long-form repeated measures structure.

• Specifically, the observation of Xi is repeated as many times as
intervals [αt−1, αt) are before the interval to which Ai belongs,
and the binary variables indicating Ai ∈ [αt−1, αt) are recorded.



Density estimation with the Super Learner algorithm

• To estimate g(A | L) and g(A − δ | L), use a pooled hazard
regression, spanning the support of A.

• We rely on the Super Learner algorithm of van der Laan et al.
(2007) to build an ensemble learner that optimally weights
each of the proposed regressions, using cross-validation (CV).

• The Super Learner algorithm uses V-fold CV to train each
proposed regression model, weighting each by the inverse of
its average risk across all V holdout sets.

• By using a library of regression estimators, we invoke the result
of van der Laan et al. (2004), who prove this likelihood-based
cross-validated estimator to be asymptotically optimal.



Key properties of TML estimators

• Asymptotic linearity:

Ψ(P⋆
n)−Ψ(PX

0 ) =
1
n

n∑
i=1

D(PX
0 )(Xi) + oP

(
1√
n

)
• Gaussian limiting distribution:

√
n(Ψ(P⋆

n)−Ψ(PX
0 )) → N(0,Var(D(PX

0 )(X)))

• Statistical inference:

Wald-type confidence interval : Ψ(P⋆
n)± z1−α

2
· σn√

n ,

where σ2
n is computed directly via σ2

n = 1
n
∑n

i=1 D2(·)(Xi).



Algorithm for TML estimation

1. Construct initial estimators gn of g0(A, L) and Qn of Q0(A, L),
perhaps using data-adaptive regression techniques.

2. For each observation i, compute an estimate Hn(ai, li) of the
auxiliary covariate H(ai, li).

3. Estimate the parameter ϵ in the logistic regression model

logitQϵ,n(a, l) = logitQn(a, l) + ϵHn(a, l),

or an alternative regression model incorporating weights.

4. Compute TML estimator Ψn of the target parameter, defining
update Q⋆

n of the initial estimate Qn,ϵn :

Ψn = Ψ(P⋆
n) =

1
n

n∑
i=1

Q⋆
n(d(Ai, Li), Li).



Algorithm for IPCW-TML estimation

1. Using all observed units (X), estimate sampling mechanism
π(Y, L), perhaps using data-adaptive regression methods.

2. Using only observed units in the second-stage sample ∆ = 1,
construct initial estimators gn(A, L) and Qn(A, L), weighting
by the sampling mechanism estimate πn(Y, L).

3. With the approach described for the full data case, compute
Hn(ai, li), and fluctuate submodel via logistic regression.

4. Compute IPCW-TML estimator Ψn of the target parameter,
by solving the IPCW-augmented EIF estimating equation.

5. Iteratively update estimated sampling weights πn(Y, L) and
IPCW-augmented EIF, updating TML estimate in each
iteration, until 1

n
∑n

i=1 EIFi <
1
n .



A linear modeling perspective

• Briefly consider a simple data structure: X = (Y,A); we seek
to model the outcome Y as a function of A.

• To posit a linear model, consider Yi = β0 + β1Ai + ϵi, with
error ϵi ∼ N(0, 1).

• Letting δ be a change in A, YA+δ − YA may be expressed

EYA+δ − EYA = [β0 + β1(EA + δ)]− [β0 + β1(EA)]
= β0 − β0 + β1EA − β1EA + β1δ

= β1δ

• Thus, a unit shift in A (i.e., δ = 1) may be seen as inducing a
change in the difference in outcomes of magnitude β1.



A causal inference perspective

• Consider a data structure: (Ya, a ∈ A).

• To posit a linear model, let Ya = β0 + β1a + ϵa for a ∈ A,
with error ϵa ∼ N(0, σ2

a) ∀a ∈ A.

• For the counterfactual outcomes (Ya′+δ,Ya′), their difference,
Ya′+δ − Ya′ , for some a′ ∈ A, may be expressed

EYa′+δ − EYa′ = [β0 + β1(a′ + δ) + Eϵa′+δ]− [β0 + β1a′ + Eϵa′ ]

= β1δ

• Thus, a unit shift for a′ ∈ A (i.e., δ = 1) may be seen as
inducing a change in the difference in the counterfactual
outcomes of magnitude β1.



Slope in a semiparametric model

• Consider the stochastic intervention g⋆(· | L):

EYg⋆ =

∫
L

∫
a
E(Y | A = a, L)g(a − δ | L) · da · dP0(L)

=

∫
L

∫
z
E(Y | A = z + δ, L)g(z | L) · dz · dP0(L),

defning the change of variable z = a − δ.

• For a semiparametric model, E(Y | A = z, L) = βz + θ(L):

EYg⋆ − EY =

∫
L

∫
z
[E(Y | A = z + δ, L)− E(Y | A = z, L)]
g(z | L) · dz · dP0(L)

= [β(z + δ) + θ(L)]− [βz + θ(L)]
= βδ



Identifying the best efficient estimator
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