
Efficient Estimation of Stochastic Intervention Effects in

Causal Mediation Analysis

Nima Hejazi

Thursday, 6th August 2020

Graduate Group in Biostatistics, and
Center for Computational Biology,
University of California, Berkeley

nshejazi
nhejazi
nimahejazi.org

with Iván Díaz & Mark van der Laan

https://nimahejazi.org
https://twitter.com/nshejazi
https://github.com/nhejazi
https://nimahejazi.org


Structural causal model

• Observed world

W = fW(UW);A = fA(W,UA); L = fL(A,W,UL)

Z = fZ(L,A,W,UZ);Y = fY(Z, L,A,W,UY)

• Counterfactuals

Y(a) = fY(Z(a), L(a), a,W,UY)

Y(z, a) = fY(z, L(a), a,W,UY)

• Directed acyclic graph

L

W ZA Y
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Stochastic interventions

Definition
Stochastic interventions yield a post-intervention exposure that is
itself a random variable after conditioning on covariates W.

Generally, consider Aδ ∼ gδ(a,w), where gδ is a post-intervention
distribution of A.

We will address two types of stochastic interventions:

• Modified treatment policies d(A,W).
• Exponential tilting.

2



Modified treatment policies

• Consider a hypothetical world where the treatment received is
some function d(A,W) of the treatment actually received A
and covariates W.

Example (Haneuse and Rotnitzky (2013))

• What is the impact of operating time on outcomes for patients
undergoing surgical resection for non-small-cell lung cancer.

• We can answer this using a hypothetical intervention
d(A,W) = A − δ for user-supplied δ.

• Denote the post-intervention exposure Aδ = d(A,W)

• Non-parametric definition of effects with an interpretation
that is familiar to users of OLS regression adjustment.

• Requires assuming piecewise smooth invertibility of d(·,w).
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Exponential tilting

• Consider an intervention that changes the exposure
distribution conditional on covariates from g(a | w) to
gδ(a | w), where

gδ(a | w) ∝ exp(δa)g(a | w)

• Denote by Aδ a draw from post-intervention distribution gδ.

Example (Kennedy (2019))

• Incremental propensity score interventions. For binary A,

gδ(1 | w) = δg(1 | w)
δg(1 | w) + 1 − g(1 | w) ,

• Here, odds{Aδ = 1 | W = w} = δ odds{A = 1 | W = w}.
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Stochastic mediation effects

• For Aδ = d(A,W) or Aδ being a draw from gδ(· | W), Díaz
and Hejazi (2020) defined the population intervention
(in)direct effects:

PIDE = E{fY(Z, L,A,W,UY)− fY(Z, LAδ
,Aδ,W,UY)}

PIIE = E{fY(Z, LAδ
,Aδ,W,UY)− fY(ZAδ

, LAδ
,Aδ,W,UY)}.

• Direct effect measures effect through paths not involving the
mediator: A → Y and A → L → Y.

• Indirect effect measures the effect through paths involving the
mediator: A → Z → Y and A → L → Z → Y.

• Not identified with intermediate confounder L:
• Since L is a confounder of {Z, L}, adjustment required.
• Since L is on the path from A to Y, adjustment disallowed.
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Interventional stochastic mediation effects

• Stochastic intervention replaces a by Aδ ∼ gδ(· | w).
• Interventional effects involve stochastic interventions on Z,

replacing z with Gδ, a random draw from distribution of ZAδ

conditional on {Aδ,W}.
• Interventional stochastic (in)direct effects:

ψ(δ) =

DE︷ ︸︸ ︷
E{YA,G − YAδ,G}+

IE︷ ︸︸ ︷
E{YAδ,G − YAδ,Gδ

} .
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Identification

• Common support: Assume supp{gδ(· | w)} ⊆ supp{g(· | w)}
∀w ∈ W.

• No unmeasured exposure-outcome confounder: Assume
Ya,z ⊥⊥ A | W.

• No unmeasured mediator-outcome confounder: Assume
Ya,z ⊥⊥ Z | (L,A,W).

• No unmeasured exposure-mediator confounder: Assume
Za ⊥⊥ A | W.
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Identification

Under identification assumptions, the direct effect ψD,δ and
indirect effect ψI,δ are identified and given, respectively, by

ψD,δ = θ1,0 − θ2,δ

ψI,δ = θ2,δ − θ1,δ,

where

θ1,δ =

∫
m(z, l, a,w)p(l | a,w)p(z | a,w)gδ(a | w)p(w)dν(a, z, l,w),

θ2,δ =

∫
m(z, l, a,w)p(l | a,w)p(z | w)gδ(a | w)p(w)dν(a, z, l,w).
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Compared to related (in)direct effects

• No cross-world independence assumptions, like the effects of
Díaz and Hejazi (2020).

• Positivity guaranteed by definition, unlike the interventional
effects of VanderWeele et al. (2014).

• Allows nonparametric effects for continuous exposures under
intermediate confounding.

• Reduces to the stochastic mediation effects of Díaz and
Hejazi (2020) in the absence of intermediate confounders L.
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Efficient influence function

• The efficient influence function (EIF) characterizes asymptotic
behavior of all regular, asymptotically linear estimators.

• We require the EIF for θ1,δ and θ2,δ, which we denote D1
P,δ(o)

and D2
P,δ(o), respectively.

• EIF takes the form Dj
P,δ(o) = Sj

P,δ(o)− Sj,A
P,δ(o), for orthogonal

scores given by Sj
P,δ(o) and Sj,A

P,δ(o).
• The exact form of Sj,A

P,δ(o) varies by the type of stochastic
intervention (modified treatment policies, exponential tilting).

• Re-parameterizations can simplify the estimation process
when either L or Z is low-dimensional.
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Efficient estimation

• We can use the EIF in the nonparametric model to construct
efficient estimators of ψD,δ and ψI,δ.

• Either one-step estimation or targeted minimum loss
estimation (TMLE); denote estimators.

• Unlike one-step estimation, TMLE constructs substitution
estimators, respecting bounds by updating in model space.

• Avoid entropy conditions by cross-validation (Zheng and
van der Laan 2011, Chernozhukov et al. 2018).

• Multiple robustness: consistency θ̂1,δ and θ̂2,δ across six
nuisance parameter configurations.
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Weak convergence

• D1
P,δ(o) and D2

P,δ(o) do not depend on all of P, only on
nuisance parameters η = (m, g, b, ū, v, d, e, s, q).

• Construct cross-validated estimates of η — i.e., for computing
η̂(Oi), use training data not containing Oi.

• Assume convergence of certain second-order terms — e.g.,
∥m̂ − m∥{. . .} = oP(n−1/2), ∥ĝ − g∥{. . .} = oP(n−1/2),
∥b̂ − b∥{. . .} = oP(n−1/2).

• Then,
√

n{ψ̂D,δ − ψD,δ}⇝ N(0; var{D1
η,0(O)− D2

η,δ(O)}) and
√

n{ψ̂I,δ − ψI,δ}⇝ N(0; var{D2
η,δ(O)− D1

η,δ(O)}).
• Wald-type confidence intervals may be generated based on

estimation of the variance terms.
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Software implementation

• The medshift R package (Hejazi and Díaz 2020) implements
TML estimator with state-of-the-art machine learning.

• Access all estimators via the eponymous medshift() function.
• Uses the sl3 R package for ensemble machine learning.
• Relies on the tmle3 framework for the TMLE implementation.
• Cross-fitting implementation via the origami R package.

• sl3, tmle3, and origami are the 3 core engines of the
tlverse software ecosystem (https://tlverse.org).

• Handbook: https://tlverse.org/tlverse-handbook
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Final remarks

• Nonparametric efficient estimation of stochastic interventional
(in)direct effects with flexible regression and cross-validation.

• Avoid reliance on misspecified parametric models.
• Cross-validation minimizes assumptions on estimators.

• R package: https://github.com/nhejazi/medshift

• For stochastic mediation, see Díaz and Hejazi (2020):
https://doi.org/10.1111/rssb.12362

• This paper: soon to appear on the arXiv (end of the month).
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Thank you!

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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Appendix



Haneuse and Rotnitzky (2013)

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(a | w) =
J(w)∑
j=1

Iδ,j{hj(a,w),w}g0{hj(a,w) | w}h′
j(a,w)

• Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Identification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).
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