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Structural causal model

= Observed world = |Intervened world
W = fw(Uw) W= fuw(Uw)
A:fA(W,UA) A=a
Z=1z(W,A, Uy) Z(a) = fz(W, a, Uy)
Y=HW,A, Z Uy) Y(a) = (W, a, Z(a), Uy)

= Also consider counterfactual Y(a, z) = fy(W, a, z, Uy)
= Note that Y(a, Z(a)) = Y(a)




Natural (in)direct effects

Counterfactuals:
Y(1) = (W, 1, Z(1), Uy); Y(0) = (W, 0, Z(0), Uy)
Average treatment effect:
vate = E{¥(1) — Y(0)}
= E{Y(1,2(1)) — (1. Z0)} + E{Y(L Z(0)) - ¥(0.Z0))}

natural indirect effect natural direct effect

Problems

» Focuses on binary exposures and static interventions
» Needs cross-world counterfactual independencies
» Requires identification of the exposure-mediator effect

» Requires positivity of exposure and mediator mechanisms
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Stochastic interventions

Definition
Stochastic interventions yield a post-intervention exposure that is

itself a random variable after conditioning on covariates W.

We will study two types of stochastic interventions:

= Modified treatment policies d(A, W).
» Exponential tilting.




Modified treatment policies

» Consider a hypothetical world where the treatment received is
some function d(A, W) of the treatment actually received A
and covariates W.

Example (Haneuse and Rotnitzky (2013))
= What is the impact of operating time on outcomes for patients

undergoing surgical resection for non-small-cell lung cancer.

= We can answer this using a hypothetical intervention
d(A, W) = A — § for user-supplied 6.

= Denote the post-intervention exposure A; = d(A, W)

= Non-parametric definition of effects with an interpretation
that is familiar to users of OLS regression adjustment.

= Requires assuming piecewise smooth invertibility of d(-, w).
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Exponential tilting

» Consider an intervention that changes the exposure

distribution conditional on covariates from g(a | w) to
gs(a| w), where

gs(a| w) < exp(da)g(a | w)
» Denote by As a draw from post-intervention distribution gs.
Example (Kennedy (2018))

= Incremental propensity score interventions. For binary A,

og(1 | w)
og(l|w)+1—g(l|w)

= Here, odds{As =1 | W=w} =dodds{A=1| W= w},

&(1|w) =




Population intervention effect

= For As = d(A, W) (modified treatment policy), or As being a
draw from gs(- | W), define the population intervention effect
(PIE) of Aon Y as

Vpie(d) = E{Y(A;) = Y}
= E{Y(As, Z(A5)) — Y(As, 2)} +E{Y(A;,2) — Y(A, 2)} .
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NV
indirect effect direct effect

= |dentification and estimation of E{Y(As, Z(As)} has been
done (e.g., Diaz and van der Laan 2012, Kennedy 2018).

» Diaz and Hejazi (2020) focus on the decomposition term
0(5) = E{Y(As, 2)}
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Identification

» Common support:
supp{gs(- | w)} C supp{g(- | w)}
» Conditional exchangeability:
E{Y(a,2) | AW, Z} =E{Y(a,2) | W, Z}

UW\\ //UW
% %
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/ \! '/ \
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Identification

6(9) = /m(a, z,w)gs(a | w)p(z, w)dv(a, z, w),
where m(a,zzw) =E(Y|A=a,Z=2z W=w).
Compared to the natural (in)direct effects:

» No cross-world independence assumptions.

No need to identify exposure-mediator effect.

Positivity guaranteed by definition.

Allows nonparametric effects for continuous exposures.

G-computation and IPW estimation

06) = £{ [ m(az, Wies(a | Wiav(a) }

“{qatzm "}

where e is the pdf of A | Z, W

ol B2l Wz 2 w)
@l =" w

» The above formulas may be used to construct the classical
G-computation and IPW estimators.

» |f the nuisance parameters estimators are data-adaptive,

1/2

G-computation and IPW generally fail to be n*/“-consistent.




Efficient one-step estimator

» Main idea: Find Dp(0) such that:
0(6) — 0p(8) = —E{Dp(0)} + O(||P— P|]?)
= De-bias 03(d) by computing
- 1 <
0(6) = 0p(0) + = > _ Dp(O)
i=1
» |n the nonparametric model there is only one such Dp; it is

referred to as canonical gradient or efficient influence function.
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Efficient Influence Function for 6(0)

= For simplicity, let A € {0,1} and consider incremental
propensity score interventions (Kennedy 2018), EIF given as

DZ/(0) = [ m(z., wigs(a | wd(a)
gs(a | w)
e(a|zw)
w)ia—g(l|w
D249~ iglt ) T (0w
where ¢(w) = E{m(1,Z, W) — m(0, Z, W) | W = w}.
= For an unabridged treatment, see Diaz and Hejazi (2020).

DY (o) = {y— m(z.2,w)},

» Original work does not construct a TML estimator.
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Weak convergence for exponential tilting

= Dp does not depend on all of P, just on n = (m, g, e, ¢).

» Construct cross-validated estimates of m, g, e, ¢ — i.e., for
computing m(O;), use training data not containing O;.

» Assume convergence of certain second-order terms — e.g.,
11— ml[||& — gll = op(n~/?).

= Then, v/n{0(8) — 0(6)} ~ N(0;var{D,(0)}).

= This result can be made uniform in intervals [0}, 0]

» Uniform result can be used to test the hypothesis of no direct
effect (Kennedy 2018): Hp : supsca 6(0) = E(Y).
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Multiple robustness

» Modified treatment policies: Assume piecewise smooth
invertibility of d(-, w), and define {z | w) = p(z | w).
Consistency requires:

1. g4 = g and either e = eor m;y = m, or
2. m; = m and either gy = gornrp =r.

Intuition: use change of variable formula to get

0(5) :E{/m(d(A, W), z, W)r(z |, W)du(z)}.

» Exponential tilt: consistency requires that g3 = g and either

€ = eor m = m.
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TML Estimator for 0(9)

» We can construct a TML estimator by using the EIF to
update initial estimates of nuisance parameters:

. L= ... N
OrmLe(d) = /E Z iy (£, 3, W)&5 i (a | W)dr(a).
i=1

» TMLE constructs a substitution estimator, respecting bounds.

= Avoid entropy conditions by cross-validation (Zheng and
van der Laan 2011, Chernozhukov et al. 2016), so let j(i) be
the index of the validation set containing observation i.

= Use universal least favorable submodels (van der Laan and
Gruber 2016) for the targeting step.

Targeting Step of TMLE for 0(6)

= g5(a| w) generated via targeting fluctuation that tilts initial
estimates towards solutions of the score 1 3" . DA(0;) = 0:
logit(&s,ke) = logit(8s,(k—1)¢) + €Z§Hf‘k_1)g
= Take g5« in final step as g5(a | w).

= Use the term before the residual a — g(1 | w) in D* as the
covariate in this regression (treating initial estimate as offset).

= Similarly for M*(z, a, w) but to solve = 37, DY(0;) = 0:

logit(Ae) = logit(M—1)¢) + ggfangj(_l)g.
= Take My in final step as ﬁvf(i)(Z, a, W).

= Use the term before the residual y — m(z, a, w) in DY as the
covariate in this regression (treating initial estimate as offset).




Software implementation

= The medshift R package (Hejazi and Diaz 2020) implements
TML estimator with state-of-the-art machine learning.

» Access all estimators via the eponymous medshift () function.
» Uses the s13 R package for ensemble machine learning.

» Relies on the tmle3 framework for the TMLE implementation.
» Cross-fitting implementation via the origami R package.

» s13, tmle3, and origami are the 3 core engines of the
tlverse software ecosystem (https://tlverse.org).

» QOur handbook: https://tlverse.org/tlverse-handbook

tiverse

The tlverse is an ecosystem of R packages for Targeted Learning that share a core set of design principles centered on extensibility.

https://tlverse.org
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Numerical studies
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Some notes and next steps

= Nonparametric efficient estimation of effects using
data-adaptive regression and cross-validation
= Avoid reliance on misspecified parametric models.
= Cross-validation helps keep the function classes unrestricted.
» Working on adaptations to mediator-outcome confounders
affected by treatment.
» R package: https://github.com/nhejazi/medshift
» |Integrated in the tlverse targeted learning ecosystem
» Paper (JRSS-B): https://doi.org/10.1111/rssb.12362

» arXiv pre-print: https://arxiv.org/abs/1901.02776
» We would love to hear your input:

- ild2005@med.cornell.edu
- nhejazi@berkeley.edu
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Thank you.

Slides: bit.ly/2020_berkeley_ medshift

lh https://nimahejazi.org
O https://github.com/nhejazi

https://twitter.com/nshejazi
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Haneuse and Rotnitzky (2013)

» Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

» Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:
J(w)

gos(a| w)= Z Is ji{hi(a, w), wtgo{hj(a, w) | W}h}(a, w)

= Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition

of an altered intervention mechanism.

» |dentification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).




