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Structural causal model

• Observed world

W = fW(UW)

A = fA(W,UA)

Z = fZ(W,A,UZ)

Y = fY(W,A,Z,UY)

• Intervened world

W = fW(UW)

A = a
Z(a) = fZ(W, a,UZ)

Y(a) = fY(W, a,Z(a),UY)

• Also consider counterfactual Y(a, z) = fY(W, a, z,UY)

• Note that Y(a,Z(a)) = Y(a)
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Natural (in)direct effects

Counterfactuals:

Y(1) = fY(W, 1,Z(1),UY); Y(0) = fY(W, 0,Z(0),UY)

Average treatment effect:

ψATE = E{Y(1)− Y(0)}
= E{Y(1,Z(1))− Y(1,Z(0))}︸ ︷︷ ︸

natural indirect effect

+E{Y(1,Z(0))− Y(0,Z(0))}︸ ︷︷ ︸
natural direct effect

Problems

• Focuses on binary exposures and static interventions
• Needs cross-world counterfactual independencies
• Requires identification of the exposure-mediator effect
• Requires positivity of exposure and mediator mechanisms
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Stochastic interventions

Definition
Stochastic interventions yield a post-intervention exposure that is
itself a random variable after conditioning on covariates W.

We will study two types of stochastic interventions:

• Modified treatment policies d(A,W).
• Exponential tilting.
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Modified treatment policies

• Consider a hypothetical world where the treatment received is
some function d(A,W) of the treatment actually received A
and covariates W.

Example (Haneuse and Rotnitzky (2013))

• What is the impact of operating time on outcomes for patients
undergoing surgical resection for non-small-cell lung cancer.

• We can answer this using a hypothetical intervention
d(A,W) = A − δ for user-supplied δ.

• Denote the post-intervention exposure Aδ = d(A,W)

• Non-parametric definition of effects with an interpretation
that is familiar to users of OLS regression adjustment.

• Requires assuming piecewise smooth invertibility of d(·,w).
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Exponential tilting

• Consider an intervention that changes the exposure
distribution conditional on covariates from g(a | w) to
gδ(a | w), where

gδ(a | w) ∝ exp(δa)g(a | w)

• Denote by Aδ a draw from post-intervention distribution gδ.

Example (Kennedy (2018))

• Incremental propensity score interventions. For binary A,

gδ(1 | w) = δg(1 | w)
δg(1 | w) + 1 − g(1 | w) ,

• Here, odds{Aδ = 1 | W = w} = δ odds{A = 1 | W = w}.
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Population intervention effect

• For Aδ = d(A,W) (modified treatment policy), or Aδ being a
draw from gδ(· | W), define the population intervention effect
(PIE) of A on Y as

ψPIE(δ) = E{Y(Aδ)− Y}
= E{Y(Aδ,Z(Aδ))− Y(Aδ,Z)}︸ ︷︷ ︸

indirect effect

+E{Y(Aδ,Z)− Y(A,Z)}︸ ︷︷ ︸
direct effect

.

• Identification and estimation of E{Y(Aδ,Z(Aδ)} has been
done (e.g., Díaz and van der Laan 2012, Kennedy 2018).

• Díaz and Hejazi (2020) focus on the decomposition term
θ(δ) = E{Y(Aδ,Z)}
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Identification

• Common support:
supp{gδ( · | w)} ⊆ supp{g( · | w)}

• Conditional exchangeability:
E{Y(a, z) | A,W,Z} = E{Y(a, z) | W,Z}
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Identification

θ(δ) =

∫
m(a, z,w)gδ(a | w)p(z,w)dν(a, z,w),

where m(a, z,w) = E(Y | A = a,Z = z,W = w).

Compared to the natural (in)direct effects:

• No cross-world independence assumptions.
• No need to identify exposure-mediator effect.
• Positivity guaranteed by definition.
• Allows nonparametric effects for continuous exposures.
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G-computation and IPW estimation

θ(δ) = E
{∫

m(a,Z,W)gδ(a | W)dν(a)
}

= E
{

gδ(A | W)

e(A | Z,W)
Y
}
,

where e is the pdf of A | Z,W:

e(a | z,w) = g(a | w)p(z | a,w)
p(z | w) .

• The above formulas may be used to construct the classical
G-computation and IPW estimators.

• If the nuisance parameters estimators are data-adaptive,
G-computation and IPW generally fail to be n1/2-consistent.
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Efficient one-step estimator

• Main idea: Find DP(o) such that:

θP̂(δ)− θP(δ) = −E{DP̂(O)}+ O
(
||P̂ − P||2

)
• De-bias θP̂(δ) by computing

θ̃(δ) = θP̂(δ) +
1
n

n∑
i=1

DP̂(Oi)

• In the nonparametric model there is only one such DP; it is
referred to as canonical gradient or efficient influence function.
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Efficient Influence Function for θ(δ)

• For simplicity, let A ∈ {0, 1} and consider incremental
propensity score interventions (Kennedy 2018), EIF given as

DZ,W
η,δ (o) =

∫
m(z, a,w)gδ(a | w)dκ(a)

DY
η,δ(o) =

gδ(a | w)

e(a | z,w)
{y − m(z, a,w)},

DA
η,δ(o) =

δϕ(w){a − g(1 | w)}
{δg(1 | w) + g(0 | w)}2 ,

where ϕ(w) = E {m(1,Z,W)− m(0,Z,W) | W = w}.
• For an unabridged treatment, see Díaz and Hejazi (2020).
• Original work does not construct a TML estimator.

11



Weak convergence for exponential tilting

• DP does not depend on all of P, just on η = (m, g, e, ϕ).
• Construct cross-validated estimates of m, g, e, ϕ — i.e., for

computing m̂(Oi), use training data not containing Oi.
• Assume convergence of certain second-order terms — e.g.,

∥m̂ − m∥∥ĝ − g∥ = oP(n−1/2).
• Then,

√
n{θ̃(δ)− θ(δ)}⇝ N(0; var{Dη(O)}).

• This result can be made uniform in intervals [δl, δu]

• Uniform result can be used to test the hypothesis of no direct
effect (Kennedy 2018): H0 : supδ∈∆ θ(δ) = E(Y).
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Multiple robustness

• Modified treatment policies: Assume piecewise smooth
invertibility of d(·,w), and define r(z | w) = p(z | w).
Consistency requires:

1. g1 = g and either e1 = e or m1 = m, or
2. m1 = m and either g1 = g or r1 = r.

Intuition: use change of variable formula to get

θ(δ) = E
{∫

m(d(A,W), z,W)r(z |,W)dν(z)
}
.

• Exponential tilt: consistency requires that g1 = g and either
e1 = e or m1 = m.
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TML Estimator for θ(δ)

• We can construct a TML estimator by using the EIF to
update initial estimates of nuisance parameters:

θ̂TMLE(δ) =

∫ 1
n

n∑
i=1

m̂⋆
j(i)(Z, a,W)ĝ⋆δ,j(i)(a | W)dκ(a).

• TMLE constructs a substitution estimator, respecting bounds.
• Avoid entropy conditions by cross-validation (Zheng and

van der Laan 2011, Chernozhukov et al. 2016), so let j(i) be
the index of the validation set containing observation i.

• Use universal least favorable submodels (van der Laan and
Gruber 2016) for the targeting step.
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Targeting Step of TMLE for θ(δ)

• ĝ⋆δ(a | w) generated via targeting fluctuation that tilts initial
estimates towards solutions of the score 1

n
∑n

i=1 DA(Oi) = 0:
logit(ĝδ,kξ) = logit(ĝδ,(k−1)ξ) + ξlfm

∆gHA
(k−1)ξ

• Take ĝδ,kξ in final step as ĝ⋆δ(a | w).
• Use the term before the residual a − g(1 | w) in DA as the

covariate in this regression (treating initial estimate as offset).

• Similarly for m̂⋆(z, a,w) but to solve 1
n
∑n

i=1 DY(Oi) = 0:
logit(m̂kξ) = logit(m̂(k−1)ξ) + ξlfm

∆mHY
(k−1)ξ.

• Take m̂kξ in final step as m̂⋆
j(i)(Z, a,W).

• Use the term before the residual y − m(z, a,w) in DY as the
covariate in this regression (treating initial estimate as offset).
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Software implementation

• The medshift R package (Hejazi and Díaz 2020) implements
TML estimator with state-of-the-art machine learning.

• Access all estimators via the eponymous medshift() function.
• Uses the sl3 R package for ensemble machine learning.
• Relies on the tmle3 framework for the TMLE implementation.
• Cross-fitting implementation via the origami R package.

• sl3, tmle3, and origami are the 3 core engines of the
tlverse software ecosystem (https://tlverse.org).

• Our handbook: https://tlverse.org/tlverse-handbook
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Numerical studies
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Some notes and next steps

• Nonparametric efficient estimation of effects using
data-adaptive regression and cross-validation

• Avoid reliance on misspecified parametric models.
• Cross-validation helps keep the function classes unrestricted.

• Working on adaptations to mediator-outcome confounders
affected by treatment.

• R package: https://github.com/nhejazi/medshift
• Integrated in the tlverse targeted learning ecosystem
• Paper (JRSS-B): https://doi.org/10.1111/rssb.12362
• arXiv pre-print: https://arxiv.org/abs/1901.02776
• We would love to hear your input:

- ild2005@med.cornell.edu
- nhejazi@berkeley.edu
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Thank you.

Slides: bit.ly/2020_berkeley_medshift

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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Appendix



Haneuse and Rotnitzky (2013)

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(a | w) =
J(w)∑
j=1

Iδ,j{hj(a,w),w}g0{hj(a,w) | w}h′
j(a,w)

• Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Identification conditions for assessing the parameter of interest
under such interventions appear technically complex (at first).
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