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The burden of HIV-1

• The HIV-1 epidemic — the facts:
• now in its fourth decade,
• 2.5 million new infections occurring annually worldwide,
• new infections outpace patients starting antiretroviral therapy.

• Most efficacious preventive vaccine: 31% reduction rate.

• Question: How can HIV-1 vaccines be improved by
modulating immunogenic CD4+ or CD8+ response profiles?
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HVTN 505 trial examined new antibody boost vaccines

• HIV Vaccine Trials Network (HVTN) 505 vaccine efficacy
RCT with n = 2504 (Hammer et al. 2013).

• Immunogenic response profile only available for second-stage
sample of n = 189 (Janes et al. 2017).

• Two-phased sampling mechanism: 100% inclusion rate if
HIV-1 positive in week 28; variable otherwise.

• Question: How would HIV-1 infection risk in week 28 have
differed had immunogenic response (due to vaccine) differed?
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• Baseline covariates(W): sex, age, BMI, behavioral HIV risk.

• Intervention(s) (A): post-vaccination T-cell activity markers.

• Outcome (Y): HIV-1 infection status at week 28 of tiral.

• Conclusion: Understanding which immune responses impact
vaccine efficacy helps develop more efficacious vaccines.

• A vaccine effective at preventing HIV-1 acquisition would be a
cost-effective and durable approach to halting the worldwide
epidemic.

• Identifying vaccine-induced immune-response biomarkers that
predict a vaccine’s ability to protect individuals from HIV-1 infection
is a high priority.

• The study was halted on 22 April 2013 due to absence of vaccine
efficacy. There was no significant effect of the vaccine on the
primary infection endpoint of HIV-1 infection between week 28 and
month 24.Two-phase sampling censors the complete data structure

• Complete, unobserved data X = (W,A,Y) ∼ PX
0 ∈ MX

NP, as
per the full HVTN 505 RCT (Hammer et al. 2013):

• W — baseline covariates: sex, age, BMI, behavioral HIV risk,

• A — intervention: immune response profile for CD4 and CD8,

• Y — outcome of interest: HIV-1 infection status by week 28.

• Observed data O = (∆,∆X) = (W,∆,∆A,Y), ∆ ∈ {0, 1}, as
per the second-stage sample of Janes et al. (2017).
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• PX
0 — true (unknown) distribution of the full data X,

• MX
NP — nonparametric statistical model.

Stochastic interventions define the causal effects of shifts

• Causal estimand: counterfactual mean of HIV-1 infection
under a shifted immunogenic response distribution.

• Díaz and van der Laan (2012; 2018): Shift interventions?

d(a,w) =





a + δ, if plausible
a, otherwise

• Díaz and van der Laan (2012; 2018) give a statistical target
parameter and influence function for the complete data case.

• Challenge: parameter estimation requires conditional density
estimation. Nonparametric options?
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• For HVTN 505, ψ0,d is the counterfactual risk of HIV-1 infection,
had the observed value of the immune response been modifed to
originate from the distribution of the rule d(A,W).

• Several different ways to consider stochastic interventions.

• Starts with Mark and Ivan’s simple stochastic shift.

• Extensions to modified treatment policies.

• The new value of A may be denoted A∗ ∼ G∗(· | W), where
A∗ = d(W,U∗) for a rule d and random error U∗.

HIV-1 risk under stochastically shifted immune responses

0

50

100

150

0

200

400

−6 −3 0 3 6 0.00 0.25 0.50 0.75 1.00

Shifted immune response distribution Risk of HIV−1 infection

5



HIV-1 risk under stochastically shifted immune responses

0

50

100

150

0

50

100

−6 −3 0 3 6 0.00 0.25 0.50 0.75 1.00

Shifted immune response distribution Risk of HIV−1 infection

5



HIV-1 risk under stochastically shifted immune responses

0

50

100

150

0

30

60

90

−6 −3 0 3 6 0.00 0.25 0.50 0.75 1.00

Shifted immune response distribution Risk of HIV−1 infection

5



HIV-1 risk under stochastically shifted immune responses

0

50

100

150

0

100

200

300

400

−6 −3 0 3 6 0.00 0.25 0.50 0.75 1.00

Shifted immune response distribution Risk of HIV−1 infection

5



Efficient estimators in spite of two-phase sampling

• What if sampling mechanism π0(Y,W) = P(∆ = 1 | Y,W) is
not known by design? Nonparametric estimation of π0(Y,W)?

• Building on Rose and van der Laan (2011), we provide
• asymptotically linear and nonparametric-efficient estimators;
• multiply robust, with 2 forms of double robustness;
• Gaussian limiting distributions and Wald-type CIs.

• New open source software for deploying such estimators:
• https://github.com/nhejazi/haldensify (densities)
• https://github.com/nhejazi/txshift (AIPW, TMLE)
• https://github.com/tlverse/tmle3shift (TMLE)
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• Asymptotic linearity:

Ψ(P⋆
n)−Ψ(PX

0 ) =
1
n

n∑

i=1
D(PX

0 )(Xi) + oP

(
1√
n

)

• Gaussian limiting distribution:
√

n(Ψ(P⋆
n)−Ψ(PX

0 )) → N(0,Var(D(PX
0 )(X)))

• Statistical inference:

Wald-type confidence interval : Ψ(P⋆
n)± zα · σn√

n ,

where σ2
n is computed directly via σ2

n = 1
n
∑n

i=1 D2(·)(Xi).

How does this help in fighting the HIV-1 epidemic?
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Figure 1: Analysis of HIV-1 risk as a function of CD8+ immunogenicity,
using R package txshift (https://github.com/nhejazi/txshift.)
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Thank you.

Slides: bit.ly/2019_bstars_shift

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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