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Preview

1. Model misspecification seriously undermines the utility of
many common statistical modeling approaches.

2. Non/semi-parametric theory allows the construction of robust
estimators that accommodate the use of machine learning.

3. Moderated variance estimators augment hypothesis testing
strategies to reduce false positives in small-sample settings.

4. The moderation approach pioneered by the limma R package
may easily be extended to non/semi-parametric estimators.



We’ll go over this summary again at the end of the talk. Hopefully, it will
all make more sense then.

Data structure and notation

• Consider a nonparametric structural equation model
(NPSEM) to describe observed data O (Pearl 2000):

W = fW(UW);A = fA(W,UA);Y = fY(A,W,UY).

• fW, fA, fY are flexible but deterministic functions; UW, UA, UY
are exogenous RVs specifying unobserved errors.

• Data on a single unit O = (W,A,Y), where O ∼ P0 ∈ M .
Observe O1, . . . ,On, i.e., n i.i.d. copies of O.

• Y = (Yb : b = 1, . . .B) is a vector of biomarker outcomes.
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Interventions and causal inference

• NPSEM: time-ordering and counterfactual RV distributions.

• Static intervention replaces fA with an assigned value A = a.

• Generates a counterfactual RV Y(a) = (Ya
b,b : 1, . . .B):

expression of B biomarkers when A is set to a.

• Thus, we have potential outcomes Yb(1) (for do(A = 1)) and
Yb(0) (for do(A = 0)) (Rubin 2005).

• We’ve now just about defined a canonical causal parameter,
the ATE: ψb = EW[Yb(1)−Yb(0)] (Pearl 2000).
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Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

A familiar workhorse: the linear model

• The linear model is semiparametric — linear in parameters!

• Flexible: accommodate transformations, interactions, etc.

• For each biomarker (b = 1, . . . ,B), fit a working linear model.

• Under the working model, the parameter βb captures the
ATE, allowing construction of estimators and inference.

• Test the coefficent of interest using a standard t-test:

tb =
β̂b −βb,H0

sb
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There’s nothing particularly wrong with this approach. It’s exactly what
we would come up with after a first-year statistics course. In practice,
there are many issues: (1) we are forced to specify a functional form, the
linear model; (2) we end up with unstable variance estimates that sharply
increase the number of false positives detected, even after multiple testing
corrections. In practice, the incredible flexibility of the linear mode is rarely
taken advantage of — scientific guidance is usually lacking to justify the
fitting of richer models.

Variance moderation robustifies inference

• When the sample size is small, s2
b may be so small that even

small effects (β̂b −βb,H0) lead to large tb.

• This results in false positives. Smyth proposes we get around
this by an empirical Bayes shrinkage of the s2

b.

• Test the coefficent of interest with a moderated t-test:

t̃b =
β̂b −βb,H0

s̃b
where s̃2

b =
s2
bdb + s2

0d0
db +d0

• Eliminates large t-statistics arising merely from very small sb.
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The substantive contribution here is the use of an empirical Bayes method
to shrink the standard deviation across all of the biomarkers such that we
obtain a larger (but accurate) estimate that reduces the number of test
statistics that are marked as significant by low s2

b estimates alone.
Note that this is not the exact formulation of the moderated t-statistic as
given by Smyth (his derivation assumes a hierarchical model; see original
paper if interested). This formulation does a good enough job to help us
see the bigger picture.

Variable importance measures as target parameters

• If the working model is incorrect, βb does not correspond to
the ATE — thus leading to biased results.

• The statistical functional identifying the ATE may be used as
a variable importance measure (VIM):

Ψb(P0) = EW,0[E0[Yb | A = 1,W]−E0[Yb | A = 0,W]]

• One-step and targeted minimum loss estimation build
efficient, doubly robust estimators Ψb(P⋆

n) of Ψb(P0).
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By allowing scientific questions to inform the parameters that we choose
to estimate, we can do a better job of actually answering the questions of
interest to our collaborators. Further, we abandon the need to specify the
functional relationship between our outcome and covariates; moreover, we
can now make use of advances in machine learning.

Robust and locally efficient estimation

• Asymptotic linearity:

Ψb(P⋆
n)−Ψb(P0) =

1
n

n
∑
i=1

Db(Oi)+oP

(
1√
n

)

• The influence function Db for the ATE takes the form

Db(Oi) =

[
2Ai −1

g0(Ai | Wi)

]
(Yb,i −Q0,b(Ai,Wi))

+Q0,b(1,Wi)−Q0,b(0,Wi)−Ψb,

where g0(A | W) = P0(A = 1 | W) is the treatment mechanism
and Q0,b(A,W) = E0[Yb | A,W] is the outcome model.
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Natural use of machine learning methods for the estimation of both Q0

and g0. Focuses effort to achieve minimal bias and asymptotic semipara-
metric efficiency bound for the variance, but still get inference (with some
assumptions).

Robust and locally efficient estimation

• wrt the data O = (W,A,Y), Db(O) admits an orthogonal
decomposition — i.e.,Db(O) = DY

b (O)+DA
b (O)+DW

b (O).

• Under randomization, DA
b (O) = 0 and need not be estimated,

though estimation improves overall efficiency (Tsiatis 2007).

• No need to specify functional forms or assume we know the
model underlying the true data-generating distribution P0.

• Machine learning to estimate nuisance functions g0(A | W)

and Q0,b(A,W), e.g., via stacked regression or cross-validation
selectors (Breiman 1996, van der Laan et al. 2007).
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Natural use of machine learning methods for the estimation of both Q0

and g0. Focuses effort to achieve minimal bias and asymptotic semipara-
metric efficiency bound for the variance, but still get inference (with some
assumptions).

Robust inference via the influence function

• Suppose we have estimated g0(A | W) and Q0,b(A,W) via ML,
yielding an estimate Dn,b(O) of Db(O), for b = 1, . . . ,B.

• Conservative variance estimator for Ψb(P⋆
n) based on Dn,b(O):

seb =

√
s2(Dn,b)

n where s2(Dn,b) =
1
n

n
∑
i=1

(Dn,b(Oi))
2

• Under H0 : Ψb(P0) = 0 (no treatment effect), test statistic:

tb =
Ψb(P⋆

n)

seb
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Using the influence curve representation, we can obtain all of the standard
objects of statistical interest, but for more interesting parameters.

Moderated statistics based on influence functions

• Moderated t-statistic of Smyth (2004) naturally extends to
locally efficient estimators:

t̃b =
Ψb(P⋆

n)

s̃eb

where the posterior estimate of influence function variance is

s̃2
b =

s2
b(Dn,b)db + s2

0d0
db +d0

• Preserves robust variance estimator but adds stability that
smoothens its small-sample behavior.
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• Consider this is repeated for b = 1, . . . ,B different biomarkers, so
that one has, for each b:

Ψb(Q∗
b,n),S2

b(ICb,n),

estimate of variable importance and standard error for all B.

• Propose an existing joint-inferential procedure that can add some
finite-sample robustness to an estimator that can be highly variable.

That’s nice and all but where’s the proof?

• Simulation study under two settings: (1) global null and (2)
when half of probes respond to treatment.

W1 ∼ Unif(0,1);W2 ∼ Unif(0,1)
A ∼ Bern(expit(−1.2−2.5 ·W1 +3.5 ·W2))

Ynull = 2+5 ·W1 +0.5 ·W2 +W1 ·W2 + ε

Ynon-null = 2+5 ·W1 +0.5 ·W2 +W1 ·W2 +5 ·A+ ε,

• Data-adaptive estimation of relevant nuisance quantities.
• Compares TML estimator of ATE to working linear model,

under moderated and standard variance estimates.
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Essentially, we have the same concerns about using variable importance
measures that we did about using the standard t-test — that is, non-robut
estimates of the standard error of the estimator of the target parameter can
cause erroneous identification of biomarkers (false positives). To reduce
this, we can apply the same machinery that we did in the case of the
standard t-test for our naive linear modeling approach.

That’s nice and all but where’s the proof? Global null.
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• Control of the FDR using the Benjamini-Hochberg correction
applied to the results of hypothesis tests based on limma, standard
TML estimator without variance moderation, and TML estimator
with variance moderation.

• TML estimators converges to the correct FDR asymptotically and
achieves the nominal rate by n = 250 while the moderated linear
model does not exhibit correct control of the FDR.

That’s nice and all but where’s the proof? Treatment effect.
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• Control of the FDR using the Benjamini-Hochberg correction
applied to the results of hypothesis tests based on the moderated
linear modeling approach of limma, the standard TML estimator
without any variance moderation, and the TML estimator with
variance moderation. Application of TML estimators converges to
the correct FDR asymptotically and achieves the nominal rate by
n = 250 while the moderated linear model does not exhibit correct
control of the FDR.

Software implementation: R/biotmle

• R package for DE analysis based on TML estimators of the
ATE that use machine learning for g0(A | W) and Q0,b(A,W).

• Statistical inference based on moderated variance estimator.

• Check out the package:
• https://github.com/nhejazi/biotmle

• https://bioconductor.org/packages/biotmle
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Use it. File an issue. Help make it better!

The tlverse for Targeted Learning

Figure 1: https://github.com/tlverse

• An ecosystem of R packages for Targeted Learning, all sharing
a core set of design principles centered on extensibility.

• Draft phase Targeted Learning handbook:
https://tlverse.org/tlverse-handbook
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Use it. File issues. Help make it better!

Review

1. Model misspecification seriously undermines the utility of
many common statistical modeling approaches.

2. Non/semi-parametric theory allows the construction of robust
estimators that accommodate the use of machine learning.

3. Moderated variance estimators augment hypothesis testing
strategies to reduce false positives in small-sample settings.

4. The moderation approach pioneered by the limma R package
may easily be extended to non/semi-parametric estimators.
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It’s always good to include a summary.
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Thank you, Bioconductor.

Slides: bit.ly/2019_bioc_modtmle

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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Here’s where you can find me, as well as the slides for this talk.


