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Preview: Summary
▶ Recent work suggests that the widespread use of

machine learning algorithms has had negative social
and policy consequences.

▶ The widespread use of machine learning in policy
issues violates human intuitions of bias.

▶ We propose a general algorithm for constructing “fair”
optimal ensemble ML estimators via cross-validation.

▶ Constraints may be imposed as functionals defined
over the target parameter of interest.

▶ Estimating constrained parameters may be seen as
iteratively minimizing a loss function along a
constrained path in the parameter space Ψ.
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What’s fair if machines aren’t?
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Fairness is machine learning?

Another potential result: a more diverse
workplace. The software relies on data
to surface candidates from a wide variety
of places...free of human biases. But
software is not free of human influence.
Algorithms are written and maintained by
people...As a result... algorithms can
reinforce human prejudices.

-Miller (2015)
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Addressing bias in a technical manner

▶ The careless use of machine learning may induce
unjustified bias.

▶ Problematic discrimination by ML approaches leads
to solutions with practical irrelevance.

▶ Ill-considered discrimination by ML approaches leads
to solutions that are morally problematic.

▶ Two doctrines of discrimination:
1. Disparate treatment: formal or intentional
2. Disparate impact: unjustified or avoidable
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Background, data, notation

▶ An observational unit: O = (W,X,Y), where W is
baseline covariates, X a sensitive characteristic, Y an
outcome of interest.

▶ Consider n i.i.d. copies O1, . . . ,On of O ∼ P0 ∈ M.

▶ Here, M is an infinite-dimensional statistical model
(i.e., indexed by an infinite-dimensional vector).

▶ We discuss the estimation of a target parameter
ψ : M → R, where

Ψ(P0) = arg min
ψ∈Ψ

EP0L(ψ)
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Just a few fairness criteria
▶ Let C : (X,W) → Y ∈ {0, 1} be a classifier; X ∈ {a,b}.
▶ Demographic parity: P(X=a)(C = 1) = P(X=b)(C = 1)

▶ Accuracy parity: P(X=a)(C = Y) = P(X=b)(C = Y)

▶ True positive parity:
P(X=a)(C = 1 | Y = 1) = P(X=b)(C = 1 | Y = 1)

▶ False positive parity:
P(X=a)(C = 1 | Y = 0) = P(X=b)(C = 1 | Y = 0)

▶ Positive predictive value parity:
P(X=a)(Y = 1 | C = 1) = P(X=b)(Y = 1 | C = 1)

▶ Negative predictive value parity:
P(X=a)(Y = 1 | C = 0) = P(X=b)(Y = 1 | C = 0)
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Wait, where did the fairness go?

▶ Goal: estimate Ψ(P0) = EP0(Y | X,W).

▶ Let Y ∈ {0, 1} and use negative log-likelihood loss:

L(ψ) = −(Y log(P(Y | X,W))+(1−Y) log(1−P(Y | X,W)))

▶ Fairness criterion — equalized odds:

Θψ(P0) =
∑

y
{EP0(L(ψ)(O) | X = 1,Y = y)

−EP0(L(ψ)(O) | X = 0,Y = y)}2

▶ Let Θψ(P0) : M → IR be a pathwise differentiable
functional for each ψ ∈ Ψ.
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Constrained functional parameters
▶ Estimate target parameter under a constraint:

Ψ(P0) = arg min
ψ∈Ψ,Θψ(P0)=0

EP0L(ψ)

▶ Goal: estimate Ψ∗(P0), the projection of Ψ(P0) onto
the subspace Ψ∗(P0) = {ψ ∈ Ψ : Θψ(P0) = 0}:

(Ψ∗, λ) = (Ψ∗(P0),Λ(P0)) ≡ arg min
ψ∈Ψ,λ

EP0L(ψ)+λΘψ(P0).

▶ Lemma: If Ψ̃(P0) = (Ψ∗(P0),Λ(P0)) is the minimizer
of the Lagrange multiplier penalized loss, then

Ψ∗(P0) = arg min
ψ∈Ψ,Θψ(P0)=0

EP0L(ψ).
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Learning with constrained parameters

▶ Risk function: R(ψ̃ | P) ≡ PnL(ψ∗) + λΘ(ψ∗ | P),
where ψ̃ = (ψ∗, λ)

▶ For ψ̃(Pn) = (Ψ̂∗(Pn), λ̂(Pn)) of Ψ̃(P0), and sample
splitting scheme Bn ∈ {0, 1}n:

R0(ψ̃,Pn) = EBnP0L(Ψ̂∗(P0
n,Bn))+Λ̂(Pn)EBnΘ(Ψ̂∗(P0

n,Bn) | P0)
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Learning with constrained parameters

▶ Cross-validated risk:

Rn,CV(ψ̃,Pn) =EBnP1
n,BnL(Ψ̂

∗(P0
n,Bn)) (1)

+ Λ̂(Pn)EBnΘ(Ψ̂∗(P0
n,Bn) | P∗

n,Bn) (2)

▶ Given candidate estimators ψ̃j(Pn) = (Ψ̂∗
j (Pn), Λ̂j(Pn)),

j = 1, . . . , J, the CV selector is given by:
Jn = arg minj Rn,CV(ψ̃j,Pn).

▶ We may define an optimal estimate of Ψ̃ by
ψ̃n ≡ ψ̃Jn(Pn) = (Ψ̂Jn(Pn), λ̂Jn(Pn))
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Mappings with constrained learners

A straightforward approach to generating estimators of
the constrained parameter would be to simply generate a

mapping according to the following simple process:

1. Generate an unconstrained estimate ψn of the
unconstrained parameter ψ0,

2. Map an estimator Θψn,n of the constraint Θψn(P0) into
the path ψn,λ. The corresponding solution ψ∗

n = ψn,λn

of Θψn,λn ,n = 0 generates an estimator of the
constrained parameter.
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Constraint-specific paths

▶ Consider ψ0,λ = arg maxψ∈Ψ EP0L(ψ) + λΘ0(ψ).

▶ {ψ0,λ : λ} represents a path in the parameter space Ψ
through ψ0 at λ = 0.

▶ This is a constraint-specific path, as it produces an
estimate under the desired functional constraint.

▶ Leverage this construction to map an initial estimator
of the unconstrained parameter ψ0 into its
corresponding constrained version ψ∗

0.
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Future work

▶ Further generalization of constraint-specific paths:
the solution path {ψ0,λ : λ} in the parameter space Ψ
through ψ0 at λ = 0.

▶ Further develop relation between constraint-specific
paths and universal least favorable submodels.

▶ Integration of the approach of constraint-specific
paths with classical classical targeted maximum
likelihood estimation — in particular, what, if any, are
the implications for inference?
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Review: Summary
▶ Recent work suggests that the widespread use of

machine learning algorithms has had negative social
and policy consequences.

▶ The widespread use of machine learning in policy
issues violates human intuitions of bias.

▶ We propose a general algorithm for constructing “fair”
optimal ensemble ML estimators via cross-validation.

▶ Constraints may be imposed as functionals defined
over the target parameter of interest.

▶ Estimating constrained parameters may be seen as
iteratively minimizing a loss function along a
constrained path in the parameter space Ψ.
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