Evaluating Survival Prognosis in the Presence of Immortal Time Bias

for the Berkeley Statistics Annual Research Symposium, given Monday, 12 March 2018

Nima Hejazi, Kevin Benac, Nicholas P. Jewell

Group in Biostatistics University of California, Berkeley

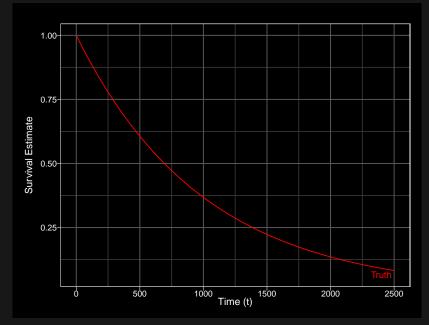
slides: goo.gl/khDyZV

Data and Motivation

- Data analysis: Survival times for patients recruited based on a first primary melanoma.
- Observational study: n₂ patients develop a second primary melanoma prior to death.
- Question: How does a second primary melanoma change the survival prognosis?

Data and Motivation

- Problem: Efficiently estimate survival prognosis for a data structure while avoiding immortal time bias.
- Why? Little attention in statistics, major problem in medicine.
- We employ and compare
 - 1. Cox proportional hazards with time-varying covariates,
 - 2. Several variations of the the Kaplan–Meier estimator.

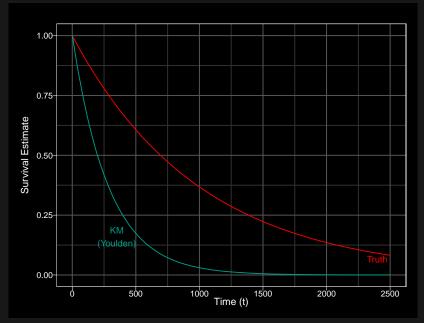

Methodology — Cox Regression

Cox model: proportional hazards assumption.

►
$$\lambda(t; Z = z) = \lambda_0(t) \exp(\beta^T z), \quad t \ge 0.$$

- Efficiency by borrowing information across groups.
- *Time-varying covariate* for group transitions.

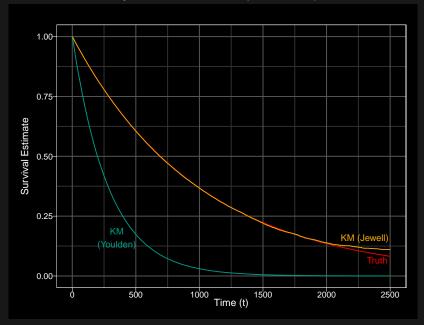
Results — Cox Proportional Hazards


Methdology — Kaplan–Meier (Youlden)

- In pratice, hard to justify Cox model assumptions.
- Nonparametric techniques are less confining.
- ► The Kaplan–Meier (KM) estimator is defined as

$$\widehat{\boldsymbol{S}}(t) = \prod_{i:t(i) < t} \left(1 - \frac{\boldsymbol{d}_i}{\boldsymbol{n}_i} \right), \quad t \ge 0.$$

Proposal: Fit KM for patients with only 1 melanoma.


Results — Kaplan–Meier (Youlden)

Methdology — Kaplan–Meier (Jewell)

- Striking difference between Kaplan–Meier and Cox.
- Why is Kaplan–Meier so sharply biased?
- Better way to estimate survival nonparametrically?
- Modify Kaplan–Meier to obtain accurate estimates?

Results — Kaplan–Meier (Jewell)

