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This slide deck is for a seminar-length talk (about 50 minutes) on a
new approach to causal inference and nonparametric variable
importance in the context of parameters defined as treatment shifts.
Here, we introduce an additive treatment shift parameter, extensions
for censored data (including a multiple double robustness property),
new statistical software for applying our approach, and applications
to a vaccine efficacy trial examining HIV. This talk was most recently
given at a meeting of the Biostatistics Seminar Series at the
University of California, Berkeley.
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Preview: Summary
▶ The evaluation of vaccine efficacy is a high-impact

scientific problem that leads to numerous statistical
challenges.

▶ Stochastic interventions provide a flexible framework
through which these statistical problems may be
viewed from the perspective of causal inference.

▶ Standard targeted minimum loss-based estimation
may be augmented to handle multi-stage sampling
designs, like those common in efficacy trials.

▶ Statistical software is now readily available for
deploying these types of techniques in a number of
settings. We apply these methods in efficacy trials.
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We’ll go over this summary again at the end of the talk. Hopefully, it
will all make more sense then.



Motivation: Let’s meet the data
▶ HIV Vaccine Trials Network (HVTN) 505 HIV-1

vaccine efficacy trial.

▶ 2504 participants, with all observed cases matched
to controls after collection of endpoints of interest.

▶ Background quantities (W): sex, age, BMI, etc.

▶ Variables of interest (A): biomarkers of immune
response (e.g., T-Cell response).

▶ Outcome of interest (Y): HIV-1 infection risk.

▶ Question: How would changes in the immune
response profile impact risk of HIV-1 infection?
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• A vaccine effective at preventing HIV-1 acquisition would be a
cost-effective and durable approach to halting the worldwide
epidemic.

• Identifying vaccine-induced immune-response biomarkers that
predict a vaccine’s ability to protect individuals from HIV-1
infection is a high priority.

• The study was halted on 22 April 2013 due to absence of vaccine
efficcacy. There was no significant effect of the vaccine on the
primary infection end- point of HIV-1 infection between week 28
and month 24.



Preventive Vaccines for HIV

▶ Substantial heterogeneity is present in the genetic
characteristics of HIV.

▶ Preventive HIV vaccines constructed using only
several antigens (out of a great many).

▶ Success: Protect well against infection caused by
virus strains similar to the source strain.

▶ Failure: Don’t protect against disease caused by
strains antigenically dissimilar to source strain.
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• HIV is a high-impact public health issue but numerous attempts
to develop vaccines have met with only mild success.

• The complexity of the disease mechanism makes it quite
challenging to study the numerous factors that contribute to a
possible mitigation of infection risk.



Sieve Analysis: A Brief History

▶ The study of whether and how the efficacy of a
vaccine varies with the virus’ characteristics.

▶ Why “sieve”? Vaccine as a barrier against select
strains, but dissimilar strains break through.

▶ Identification of sieve effects guides decisions for
future development of multivalent vaccines.

▶ Sieve analysis is usually performed within a
competing risks framework.
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• The reliance on competing risks leads to the use of
nonparametric estimators like Aalen-Johnson or semiparametric
methods like the Cox model.

• Within this framework, could evaluate instantaneous risks of
infection (i.e., hazard) or cumulative incidence. The latter could
be more interesting from a public health perspective.



Immune Response and Vaccine Efficacy

▶ A 12-color intracellular cytokine staining (ICS) assay
was performed.

▶ Cryopreserved peripheral blood mononuclear cells
were stimulated with synthetic HIV-1 peptide pools.

▶ Immune responses of interest were
1. Total magnitude of the CD4+ T-cell response.
2. COMPASS Env-specific CD4+ T-cell polyfunctionality

score.
3. Total magnitude of the CD8+ T-cell response.
4. COMPASS Env-specific CD8+ T-cell polyfunctionality

score.
5. CD4+ and CD8+ T-cell log10-transformed total magnitude

variables.
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• For a complete description of the immune responses of interests
and how these were collected, consult the supplemental
materials of HE Janes (2017).

• This class of data is difficult and expensive to collect, which
begins to provide motivation for why it might be undesirable to
restrict the types of analyses performed to classical
semiparametrics.

• Such classical analyses severely restrict the scope of the scientific
questions we’re able to ask.



Immune Reponse and Vaccine Efficacy

▶ Goal: Evaluate the immune response variables
among vaccine recipients as predictors of HIV-1
infection.

▶ Cox proportional hazard models that account for
case-control sampling design and adjust for the
baseline covariates.

▶ λ (t; Z = z) = λ0(t) exp
(
βTz

)
, t ≥ 0.

– Semiparametric overall.
– nonparametric in λ0, parametric in β.

▶ Corrections for multiple testing performed, with
q-values below 0.20 considered significant.
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• Principal components analysis (PCA) was used to discover
unique immune response profiles among vaccine recipients.

• First and second principal components were associated with
HIV-1 infection using Cox proportional hazards regression
models that account for the sampling design and baseline
covariates.

• Logistic regression models with lasso penalty and weights to
account for case-control sampling were used to identify the
baseline covariates and immune response variables that best
predict HIV-1 infection.



Motivation: Science Before Statistics

▶ Cox model: assumption of proportional hazards.

▶ Such models are a matter of convenience: does β̂
answer our scientific questions?

– Perhaps not.

▶ Is consideration being given to whether the data
could have been generated by a process that is
consistent with the assumptions of the Cox model?

– Perhaps not.
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Interlude: Causal Inference
1. Motivation: “We do not have knowledge of a thing

until we have grasped its why, that is to say, its
cause.” –Aristotle

2. Our question of interest concerns the manner in
which changes in a given immune response profile
affect risk of HIV-1 infection.

– This is a question of causality.
– How does intervening on immune response profile cause

changes in the risk of HIV-1 infection.

3. But how do we go about thinking about intervening on
continuous quantities (e.g., immune response profile
measures)?

4. Classical causal parameters (e.g., ATE) are not well
suited for answering these sorts of questions.
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Causal Inference and Vaccine Efficacy

▶ Consider observing n individuals in a data structure
of the form specified above.

▶ To formalize, consider O = (W,A,Y) ∼ P0 ∈ M,
where we make no assumptions on the statistical
model containing P0.

▶ For the treatment A, we would normally be limited to
thinking about counterfactual means (i.e., EYa for
A = a) or similar quantities.

▶ This requires specifying a particular value of the
treatment (i.e., A = a) under which to evaluate the
outcome.
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Stochastic Treatment Regimes
▶ Rather than a deterministic intervention, consider a

shift of the treatment (i.e., instead of A = a, consider
A = a + δ).

▶ This is a far more flexible approach. We need not
specify a given value of the treatment but rather a
shift (δ) of the treatment.

▶ In this setting, the effect of the intervention appears
as EYa+δ − EYa, where A = a is simply the observed
value of treatment.

▶ To compare with the linear model, the shift δ may be
thought of as analogous to shifts in the slope of the
regression line.
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Problems with Stochastic Interventions

▶ Even though we employ a more flexible type of
intervention, the common assumptions (and
problems!) of causal inference still arise.

– Randomization: Yd(a,w) |= A | W
– Positivity: 0 < P(A | W) < 1 everywhere. The propensity

score is bounded in (0, 1).

▶ To protect against positivity violations, a clever
shifting mechanism: d(a,w) = a + δ, if a + δ < u(w)
and d(a,w) = a otherwise.

▶ The shift d(A,W) is now a function of the observed
data, and the shift intervention (a + δ) is only applied
when there is support in the observed data.
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Parameters for Treatment Shifting
▶ Let’s consider a simple statistical target parameter:

Ψ(P) = EPQ̄(d(A,W),W)

▶ Assume piecewise smooth invertibility of d(a,w) in
order to obtain a pathwise differentiability of the
parameter.

▶ This makes semiparametric-efficient estimation in the
nonparametric model possible when relying on
stochastic interventions.

▶ The parameter now corresponds to our scientific
question of interest: How does shifting immune
response by an amount δ affect the risk of HIV-1
infection?
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By allowing scientific questions to inform the parameters that we
choose to estimate, we can do a better job of actually answering the
questions of interest to our collaborators. Further, we abandon the
need to specify the functional relationship between our outcome and
covariates; moreover, we can now make use of advances in machine
learning.



Semiparametric-Efficient Estimation

▶ Recall that our statistical parameter of interest is

Ψ(P) = EPQ̄(d(A,W),W)

▶ For which the efficient influence function (EIF) is

D(P)(o) = H(a,w)y − Q̄(a,w) + Q̄(d(a,w),w) − Ψ(P)

▶ The auxiliary covariate introduced (i.e., H(a,w)) may
be expressed

H(a,w) = I(a < u(w))
g0(a − δ | w)

g0(a | w)
+ I(a ≥ u(w) − δ)
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The auxiliary covariate simplifies when the treatment is in the limits
(conditional on W) — i.e., for Ai ∈ (u(w) − δ, u(w)), then we have
H(a, w) = g0(a−δ|w)

g0(a|w) + 1.



Target Minimum Loss-Based Estimation
▶ TMLEs provide semiparametric-efficient estimation

and robust inference in nonparametric models.

▶ Asymptotic linearity:

Ψ(P∗
n) − Ψ(P0) =

1

n

n∑

i=1

IC(Oi) + oP

(
1√
n

)

▶ Limiting distribution:
√

n(Ψn − Ψ) → N(0,Var(D(P0)))

▶ Statistical inference:

Ψn ± zα · σn√
n
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Under the additional condition that the remainder term R(P̂∗, P0)

decays as oP

(
1√
n

)
, we have that

Ψn − Ψ0 = (Pn − P0) · D(P0) + oP

(
1√
n

)
, which, by a central limit

theorem, establishes a Gaussian limiting distribution for the
estimator, with variance V(D(P0)), the variance of the efficient
influence function when Ψ admits an asymptotically linear
representation.

The above implies that Ψn is a
√

n-consistent estimator of Ψ, that it is
asymptotically normal (as given above), and that it is locally efficient.
This allows us to build Wald-type confidence intervals, where σ2

n is an
estimator of V(D(P0)). The estimator σ2

n may be obtained using the
bootstrap or computed directly via σ2

n = 1
n

∑n
i=1 D2(Q̄∗

n, gn)(Oi)



Statistical Inference for TMLEs
▶ Asymptotic distribution of TML estimators has been

studied thoroughly:
ψn − ψ0 = (Pn − P0) · D(P0) + R(P̂∗,P0), giving
ψn − ψ0 = (Pn − P0) · D(P0) + oP

(
1√
n

)
.

▶ Have a Gaussian limiting distribution√
n(ψn − ψ) → N(0,V(D(P0))) when ψ exhibits

asymptotically linearity.

▶ Statistical inference using Wald-type confidence
intervals: Ψn ± zα · σn√

n , where σ2
n is an estimator of

V(D(P0)).

▶ Bootstrap for σ2
n or compute directly via

σ2
n = 1

n
∑n

i=1 D2(Q̄∗
n, gn)(Oi).
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1. If D(Q̄∗
n, gn) converges to D(P0) in L2(P0) norm.

2. The size of the class of functions Q̄∗
n and gn is bounded

(technically, ∃F st D(Q̄∗
n, gn) ∈ F whp, where F is a Donsker

class)



Complication: Multi-Stage Sampling
▶ In the 505 HIV-1 trial, all infected individuals are

matched to pairs using a complex mechanism.

▶ Using our observed data structure O = (W,A,Y), let
us introduce V = (W,Y), where V is the set of
variables used to define the sampling mechanism.

▶ Thus, the observed data structure is now represented
O = (W,∆A,Y) wrt to the full data structure.

– In the above, let ∆ = f(V) be binary st ∆ ∈ {0, 1}.
– Further, let Π0(V) = P(∆ = 1 | V) and Πn(V) be an

estimator of Π0(V).

▶ In this way, our approach accounts for multi-stage
sampling (e.g., matched or case-control designs).
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Multi-Stage Sampling with TMLEs
▶ Rose & van der Laan (2011) introduce an

IPCW-TMLE to be used when the data structure
takes the form O = (V,∆,∆X), for multi-stage
sampling designs.

▶ How? Use an IPC-weighted loss function:

L(PX)(O) =
∆

Πn(V)
LF(PX)(X)

▶ The IPCW-TMLE solves the full-data efficient
influence function (EIF) equation:

0 =
1

n

n∑

i=1

∆i

Πn(Vi)
DF(P∗

X,n)(Xi).
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Note that the IPCW-TMLE is not fully semiparametric-efficient,
unless the estimator of Πn(V) is nonparametric, which requires that V
be discrete. Of course, violation of these assumptions can be highly
problematic.



Efficiency Under Multi-Stage Sampling

▶ When working in a nonparametric model, it is
necessary to use a nonparametric estimator of the
missingness mechanism to obtain full efficiency.

▶ In many practical settings, this further complicates the
efficient influence function estimating equation

0 =Pn
∆

Π∗
n(V)

DF(P∗
X,n)

−
{

∆

Π∗
n(V)

− 1

}
En(DF(P0

X,n) | ∆ = 1,V).
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Putting It Together: Multiple Robustness

▶ We now have a semiparametric-efficient and robust
procedure for assessing the effect of the intervention
d(a,w) = a + δ even in the presence of multi-stage
sampling.

▶ Due to the nature of the IPCW-TMLE, we have a form
of multiple double robustness — in terms of
combinations of (g,Q) and (Π,E0(DF(PF) | V)).

▶ This allows us to assess how simple (additive) shifts
of immune response variables affect the risk of HIV-1
infection.

19



Software package: R/txshift

Figure: https://github.com/nhejazi/txshift

▶ Variable importance for continuous interventions.
▶ Take it for a test drive! Coming soon . . .
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• Contribute on GitHub:
https://github.com/nhejazi/txshift.

• Reach out to us with questions and any feature requests.



Software Ecosystem: The tlverse!

Figure: https://github.com/tlverse

▶ This is a new framework for Targeted Learning with a
focus on extensibility.

▶ “txshift” will be the first of many connector packages
— collaboration with Jeremy Coyle and others.
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• Contribute on GitHub: https://github.com/tlverse.

• Reach out to us with questions and any feature requests.



Future Work
▶ Exploration of different forms of stochastic treatment

shifts — EH Kennedy provides a shift in propensity
score space in a recent JASA manuscript currently in
press (collaboration in progress).

▶ Further refinement of the available software, explore
how to provide a more efficient and extensible
system, including stronger integration with the tlverse.

▶ Refinements of statistical theory so as to better work
with quantities common in survival analysis:
hazards? survival?

▶ Assessment of efficacy trials other than the HVTN
505 HIV-1 vaccine trial — perhaps further scientific
findings?
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Review: Summary
▶ The evaluation of vaccine efficacy is a high-impact

scientific problem that leads to numerous statistical
challenges.

▶ Stochastic interventions provide a flexible framework
through which these statistical problems may be
viewed from the perspective of causal inference.

▶ Standard targeted minimum loss-based estimation
may be augmented to handle multi-stage sampling
designs, like those common in efficacy trials.

▶ Statistical software is now readily available for
deploying these types of techniques in a number of
settings. We apply these methods in efficacy trials.
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It’s always good to include a summary.
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