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Preview: Summary
▶ DNA methylation data is extremely high-dimensional

— we can collect data on 850K genomic sites with
modern arrays!

▶ Normalization and QC are critical components of
properly analyzing modern DNA methylation data.
There are many choices of technique.

▶ A relative scarcity of techniques for estimation and
inference exists — analyses are often limited to the
general linear model.

▶ Statistical causal inference provides an avenue for
answering richer scientific questions, especially when
combined with modern advances in machine learning.
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We’ll go over this summary again at the end of the talk. Hopefully, it
will all make more sense then.



Motivation: Let’s meet the data

▶ Observational study of the impact of disease state on
DNA methylation.

▶ Phenotype-level quantities: 216 subjects, binary
disease status (FASD) of each subject, background
info on subjects (e.g., sex, age).

▶ Genomic-level quantities: ∼ 850, 000 CpG sites
interrogated using the Infinium MethylationEPIC
BeadChip by Illumina.

▶ Questions: How do disease status and differential
methylation relate? Is a coherent biomarker-type
signature detectable?
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• FASD is an abbreviation for Fetal Alcohol Spectrum Disorders.

• We’re mostly interested in the interplay between disease and
DNA methylation.

• In particular, we’d like to construct some kind of importance
score for CpG sites impacted by the exposure/disease of interest.

• Re: dimensionality, c.f., RNA-seq analyses are ∼ 30, 000 in
dimension at the gene level.



DNA Methylation

Figure: https://www.illumina.com/techniques/sequencing/
methylation-sequencing.html (source)
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• The biology of these structures is quite complicated: many
different structures — CpG islands, shores, etc.

• Both hypermethylation and hypomethylation are linked to
disease states.

• It’s especially important to examine these processes, keeping in
mind that the process may be complex and non-monotonic.



Data analysis? Linear Models!
▶ Standard operating procedure: For each CpG site

(g = 1, . . . , G), fit a linear model:

E[yg] = Xβg

▶ Test the coefficent of interest using a standard t-test:

tg =
β̂g − βg,H0

sg

▶ Such models are a matter of convenience: does β̂g
answer our scientific questions? Perhaps not.

▶ Is consideration being given to whether the data could
have been generated by a linear model? Perhaps not.
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• CpG sites are thought to function in networks. Treating them as
acting independently is not faithful to the underlying biology.

• The linear model is a great starting point for analyses whne the
data is generated using complex technology — no need to make
the analysis more complicated.

• That being said, the data is difficult and expensive to collect, so
why restrict the scope of the questions we’d like to ask.



Motivation: Science Before Statistics

What is the effect of disease status
on DNA methylation at a specific CpG
site , controlling for the observed
methylation status of the neighbors
of the given CpG site?
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• Again, CpG sites are thought to function in networks. Treating
them as acting independently is not faithful to the underlying
biology.

• This means that we should take into account the methylation
status of neighboring CpG sites when assessing differential
methylation at a single site.

• This is a coherent scientific question that we can set out to
answer statistically. It’s motivated by the established science
and possible to do with modern statistical methodology.



Data analysis? A Data-Adaptive Approach

1. Isolate a subset of CpG sites for which there is
cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp
distance). If there are many neighbors, apply
clustering (e.g., PAM) to select a subset.

3. Estimate variable importance measure (VIM) at each
screened CpG site, with disease as intervention (A)
and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method
for FDR control, accounting for initial screening.
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• Pre-screening is a critical step since we cannot perform
computationally intensive estimation on all the sites. This is
flexible — just use your favorite method (as long as allows a
ranking to be made).

• The variable importance step merely comes down to the creation
of a score. We use TMLE to statistically estimate parameters
from causal models. The procedure is general enough to
accomodate any inference technique.



Pre-Screening — Pick Your Favorite Method

▶ The estimation procedure is computationally intensive
— apply it only to sites that appear promising.

▶ Consider estimating univariate (linear) regressions of
intervention on CpG methylation status. Fast, easy.

▶ Select CpG sites with a marginal p-value below, say,
0.01. Apply data-adaptive procedure to this subset.

▶ The modeling assumptions do not matter since the
we won’t be pursuing inference under such a model.

▶ Software implementation is extensible. Users are
encouraged to add their own. (It’s easy!)
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• We’ll be adding to the available routines for pre-screening too!
For now, we have limma, and more are on the way.



Too Many Neighbors? Clustering
▶ There are many options: k-means, k-medoids, etc.,

as well as many algorithmic solutions.

▶ For convenience, we use Partitioning Around
Medoids (PAM), a well-established algorithm.

▶ With limited sample sizes, the number of neighboring
sites that may be controlled for is limited.

▶ To faithfully answer the question of interest, choose
the neighboring sites that are the most representative.

▶ This is an optional step — it need only be applied
when there is a large number of CpG sites in the
neighborhood of the target CpG site.
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• The number of sites that we can control for is roughly a function
of sample size. This impacts the definition of the parameter that
we estimate, and allows enough flexibility to obtain either very
local or more regional estimates.



Nonparametric Variable Importance
▶ Let’s consider a simple target parameter: the average

treatment effect (ATE):

Ψg(P0) = EW,0[E0[Yg | A = 1, W−g]−E0[Yg | A = 0, W−g]]

▶ Under certain (untestable) assumptions, interpretable
as difference in methylation at site g with intervention
and, possibly contrary to fact, the same under no
intervention, controlling for neighboring sites.

▶ Provides a nonparametric (model-free) measure for
those CpG sites impacted by a discrete intervention.

▶ Let the choice of parameter be determined by our
scientific question of interest.
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By allowing scientific questions to inform the parameters that we
choose to estimate, we can do a better job of actually answering the
questions of interest to our collaborators. Further, we abandon the
need to specify the functional relationship between our outcome and
covariates; moreover, we can now make use of advances in machine
learning.



Target Minimum Loss-Based Estimation
▶ We use targeted minimum loss-based estimation

(TMLE), a method for inference in semiparametric
infinite-dimensional statistical models.

▶ No need to specify a functional form or assume that
we know the true data-generating distribution.

▶ Asymptotic linearity:

Ψg(P∗
n) − Ψg(P0) =

1

n

n∑

i=1

IC(Oi) + oP

(
1√
n

)

▶ Limiting distribution:
√

n(Ψn − Ψ) → N(0, Var(D(P0)))

▶ Statistical inference:
Ψn ± zα · σn√

n
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Under the additional condition that the remainder term R(P̂∗, P0)

decays as oP

(
1√
n

)
, we have that

Ψn − Ψ0 = (Pn − P0) · D(P0) + oP

(
1√
n

)
, which, by a central limit

theorem, establishes a Gaussian limiting distribution for the
estimator, with variance V(D(P0)), the variance of the efficient
influence curve (canonical gradient) when Ψ admits an asymptotically
linear representation.

The above implies that Ψn is a
√

n-consistent estimator of Ψ, that it is
asymptotically normal (as given above), and that it is locally efficient.
This allows us to build Wald-type confidence intervals, where σ2

n is an
estimator of V(D(P0)). The estimator σ2

n may be obtained using the
bootstrap or computed directly via σ2

n = 1
n

∑n
i=1 D2(Q̄∗

n, gn)(Oi)



Corrections for Multiple Testing

▶ Multiple testing corrections are critical. Without these,
we systematically obtain misleading results.

▶ The Benjamini & Hochberg procedure for controlling
the False Discovery Rate (FDR) is a well-established
technique for addressing the multiple testing issue.

▶ We use a modified BH-FDR procedure to account for
the pre-screening step of the proposed algorithm.

▶ This modified BH-FDR procedure for multi-stage
analyses (FDR-MSA) works by adding a p-value of
1.0 for each site that did not pass pre-screening then
performs BH-FDR as normal.
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• Note that FDR = E
[ V

R
]

= E
[ V

R | R > 0
]

P(R > 0).

• BH-FDR procedure: Find k̂ = max{k : p(k) ≤ k
M · α}

• FDR-MSA will only incur a loss of power if the initial screening
excludes variables that would have been rejected by the BH
procedure when applied to the subset on which estimation was
performed.

• BH-FDR control is a rank-based procedure, so we must assume
that the pre-screening does not disrupt the ranking with respect
to the estimation subset, which is provably true for screening
procedures of a given type.

• MSA controls type I error with any procedure that is a function
of only the type I error itself — e.g., FWER. This does not hold
for the FDR in complete generality.



Software package: R/methyvim

Figure: https://bioconductor.org/packages/methyvim

▶ Variable importance for discrete interventions.
▶ Future releases will support continuous interventions.
▶ Take it for a test drive!
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• Contribute on GitHub.

• Reach out to us with questions and feature requests.



Data analysis the methyvim way

Figure: http://code.nimahejazi.org/methyvim 13



Review: Summary
▶ DNA methylation data is extremely high-dimensional

— we can collect data on 850K genomic sites with
modern arrays!

▶ Normalization and QC are critical components of
properly analyzing modern DNA methylation data.
There are many choices of technique.

▶ A relative scarcity of techniques for estimation and
inference exists — analyses are often limited to the
general linear model.

▶ Statistical causal inference provides an avenue for
answering richer scientific questions, especially when
combined with modern advances in machine learning.
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It’s always good to include a summary.
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