Data-Adaptive Estimation and Inference in the Analysis of Differential Methylation

for the annual retreat of the Center for Computational Biology,
given 18 November 2017

Nima Hejazi

Division of Biostatistics
University of California, Berkeley
stat.berkeley.edu/~nhejazi

nimahejazi.org
twitter/@nshejazi
github/nhejazi

slides: goo.gl/xabp3Q
DNA methylation data is extremely high-dimensional — we can collect data on 850K genomic sites with modern arrays!

Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
DNA methylation data is extremely high-dimensional — we can collect data on 850K genomic sites with modern arrays!

Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
Preview: Summary

- DNA methylation data is *extremely* high-dimensional — we can collect data on 850K genomic sites with modern arrays!

- Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

- A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

- Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
DNA methylation data is *extremely* high-dimensional— we can collect data on 850K genomic sites with modern arrays!

Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
Motivation: Let’s meet the data

- Observational study of the impact of disease state on DNA methylation.

- Phenotype-level quantities: 216 subjects, binary disease status (FASD) of each subject, background info on subjects (e.g., sex, age).

- Genomic-level quantities: ~850,000 CpG sites interrogated using the Infinium MethylationEPIC BeadChip by Illumina.

- Questions: How do disease status and differential methylation relate? Is a coherent biomarker-type signature detectable?
Motivation: Let’s meet the data

- Observational study of the impact of disease state on DNA methylation.

- Phenotype-level quantities: 216 subjects, binary disease status (FASD) of each subject, background info on subjects (e.g., sex, age).

- Genomic-level quantities: \(\sim 850,000 \) CpG sites interrogated using the *Infinium MethylationEPIC BeadChip* by Illumina.

- **Questions**: How do disease status and differential methylation relate? Is a coherent biomarker-type signature detectable?
Motivation: Let’s meet the data

- Observational study of the impact of disease state on DNA methylation.

- Phenotype-level quantities: 216 subjects, binary disease status (FASD) of each subject, background info on subjects (e.g., sex, age).

- Genomic-level quantities: \(\sim 850,000 \) CpG sites interrogated using the *Infinium MethylationEPIC BeadChip* by Illumina.

- Questions: How do disease status and differential methylation relate? Is a coherent biomarker-type signature detectable?
Motivation: Let’s meet the data

- Observational study of the impact of disease state on DNA methylation.

- Phenotype-level quantities: 216 subjects, binary disease status (FASD) of each subject, background info on subjects (e.g., sex, age).

- Genomic-level quantities: \(\sim 850,000 \) CpG sites interrogated using the *Infinium MethylationEPIC BeadChip* by Illumina.

- **Questions**: How do disease status and differential methylation relate? Is a coherent biomarker-type signature detectable?
Data analysis? Linear Models!

- Standard operating procedure: For each CpG site \((g = 1, \ldots, G)\), fit a linear model:

\[
\mathbb{E}[y_g] = X\beta_g
\]

- Test the coefficient of interest using a standard t-test:

\[
t_g = \frac{\hat{\beta}_g - \beta_{g,H_0}}{s_g}
\]

- Such models are a matter of convenience: does \(\hat{\beta}_g\) answer our scientific questions? Perhaps not.

- Is consideration being given to whether the data could have been generated by a linear model? Perhaps not.
Data analysis? Linear Models!

- Standard operating procedure: For each CpG site \((g = 1, \ldots, G)\), fit a linear model:

\[
\mathbb{E}[y_g] = X\beta_g
\]

- Test the coefficient of interest using a standard t-test:

\[
t_g = \frac{\hat{\beta}_g - \beta_{g,H_0}}{s_g}
\]

- Such models are a matter of convenience: does \(\hat{\beta}_g\) answer our scientific questions? Perhaps not.

- Is consideration being given to whether the data could have been generated by a linear model? Perhaps not.
Data analysis? Linear Models!

- Standard operating procedure: For each CpG site \((g = 1, \ldots, G)\), fit a linear model:

\[
E[y_g] = X\beta_g
\]

- Test the coefficient of interest using a standard t-test:

\[
t_g = \frac{\hat{\beta}_g - \beta_{g,H_0}}{s_g}
\]

- Such models are a matter of convenience: does \(\hat{\beta}_g\) answer our scientific questions? Perhaps not.

- Is consideration being given to whether the data could have been generated by a linear model? Perhaps not.
Data analysis? Linear Models!

▶ Standard operating procedure: For each CpG site \((g = 1, \ldots, G)\), fit a linear model:

\[
\mathbb{E}[y_g] = X \beta_g
\]

▶ Test the coefficient of interest using a standard t-test:

\[
t_g = \frac{\hat{\beta}_g - \beta_{g,H_0}}{s_g}
\]

▶ Such models are a matter of convenience: does \(\hat{\beta}_g\) answer our scientific questions? Perhaps not.

▶ Is consideration being given to whether the data could have been generated by a linear model? Perhaps not.
Motivation: Science Before Statistics

What is the effect of disease status on DNA methylation at a specific CpG site, controlling for the observed methylation status of the neighbors of the given CpG site?
1. Isolate a subset of CpG sites for which there is cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp distance). If there are many neighbors, apply clustering (e.g., PAM) to select a subset.

3. Estimate variable importance measure (VIM) at each screened CpG site, with disease as intervention (A) and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method for FDR control, accounting for initial screening.
1. Isolate a subset of CpG sites for which there is cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp distance). If there are many neighbors, apply clustering (e.g., PAM) to select a subset.

3. Estimate variable importance measure (VIM) at each screened CpG site, with disease as intervention (A) and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method for FDR control, accounting for initial screening.
1. Isolate a subset of CpG sites for which there is cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp distance). If there are many neighbors, apply clustering (e.g., PAM) to select a subset.

3. Estimate *variable importance measure* (VIM) at each screened CpG site, with disease as intervention (A) and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method for FDR control, accounting for initial screening.
1. Isolate a subset of CpG sites for which there is cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp distance). If there are many neighbors, apply clustering (e.g., PAM) to select a subset.

3. Estimate *variable importance measure* (VIM) at each screened CpG site, with disease as intervention (A) and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method for FDR control, accounting for initial screening.
Pre-Screening — Pick Your Favorite Method

- The estimation procedure is computationally intensive — apply it only to sites that appear promising.

- Consider estimating univariate (linear) regressions of intervention on CpG methylation status. Fast, easy.

- Select CpG sites with a marginal p-value below, say, 0.01. Apply data-adaptive procedure to this subset.

- The modeling assumptions do not matter since we won’t be pursuing inference under such a model.

- Software implementation is extensible. Users are encouraged to add their own. (It’s easy!)
Pre-Screening — Pick Your Favorite Method

- The estimation procedure is computationally intensive — apply it only to sites that appear promising.

- Consider estimating univariate (linear) regressions of intervention on CpG methylation status. Fast, easy.

- Select CpG sites with a marginal p-value below, say, 0.01. Apply data-adaptive procedure to this subset.

- The modeling assumptions do not matter since we won’t be pursuing inference under such a model.

- Software implementation is extensible. Users are encouraged to add their own. (It’s easy!)
Pre-Screening — Pick Your Favorite Method

▶ The estimation procedure is computationally intensive — apply it only to sites that appear promising.

▶ Consider estimating univariate (linear) regressions of intervention on CpG methylation status. Fast, easy.

▶ Select CpG sites with a marginal p-value below, say, 0.01. Apply data-adaptive procedure to this subset.

▶ The modeling assumptions do not matter since we won’t be pursuing inference under such a model.

▶ Software implementation is extensible. Users are encouraged to add their own. (It’s easy!)
Pre-Screening — Pick Your Favorite Method

- The estimation procedure is computationally intensive — apply it only to sites that appear promising.
- Consider estimating univariate (linear) regressions of intervention on CpG methylation status. Fast, easy.
- Select CpG sites with a marginal p-value below, say, 0.01. Apply data-adaptive procedure to this subset.
- The modeling assumptions do not matter since the we won’t be pursuing inference under such a model.
- Software implementation is extensible. Users are encouraged to add their own. (It’s easy!)
Pre-Screening — Pick Your Favorite Method

- The estimation procedure is computationally intensive — apply it only to sites that appear promising.

- Consider estimating univariate (linear) regressions of intervention on CpG methylation status. Fast, easy.

- Select CpG sites with a marginal p-value below, say, 0.01. Apply data-adaptive procedure to this subset.

- The modeling assumptions do not matter since the we won’t be pursuing inference under such a model.

- Software implementation is extensible. Users are encouraged to add their own. (It’s easy!)
Too Many Neighbors? Clustering

- There are many options: k-means, k-medoids, etc., as well as many algorithmic solutions.

- For convenience, we use Partitioning Around Medoids (PAM), a well-established algorithm.

- With limited sample sizes, the number of neighboring sites that may be controlled for is limited.

- To faithfully answer the question of interest, choose the neighboring sites that are the most representative.

- This is an optional step — it need only be applied when there is a large number of CpG sites in the neighborhood of the target CpG site.
Too Many Neighbors? Clustering

- There are many options: k-means, k-medoids, etc., as well as many algorithmic solutions.

- For convenience, we use Partitioning Around Medoids (PAM), a well-established algorithm.

- With limited sample sizes, the number of neighboring sites that may be controlled for is limited.

- To faithfully answer the question of interest, choose the neighboring sites that are the most representative.

- This is an optional step — it need only be applied when there is a large number of CpG sites in the neighborhood of the target CpG site.
Too Many Neighbors? Clustering

- There are many options: k-means, k-medoids, etc., as well as many algorithmic solutions.

- For convenience, we use Partitioning Around Medoids (PAM), a well-established algorithm.

- With limited sample sizes, the number of neighboring sites that may be controlled for is limited.

- To faithfully answer the question of interest, choose the neighboring sites that are the most representative.

- This is an optional step — it need only be applied when there is a large number of CpG sites in the neighborhood of the target CpG site.
Too Many Neighbors? Clustering

- There are many options: k-means, k-medoids, etc., as well as many algorithmic solutions.
- For convenience, we use Partitioning Around Medoids (PAM), a well-established algorithm.
- With limited sample sizes, the number of neighboring sites that may be controlled for is limited.
- To faithfully answer the question of interest, choose the neighboring sites that are the most representative.
- This is an *optional* step — it need only be applied when there is a large number of CpG sites in the neighborhood of the target CpG site.
Too Many Neighbors? Clustering

- There are many options: k-means, k-medoids, etc., as well as many algorithmic solutions.
- For convenience, we use Partitioning Around Medoids (PAM), a well-established algorithm.
- With limited sample sizes, the number of neighboring sites that may be controlled for is limited.
- To faithfully answer the question of interest, choose the neighboring sites that are the most representative.
- This is an optional step — it need only be applied when there is a large number of CpG sites in the neighborhood of the target CpG site.
Nonparametric Variable Importance

- Let's consider a simple target parameter: the average treatment effect (ATE):

\[\Psi_g(P_0) = \mathbb{E}_{W,0}[\mathbb{E}_0[Y_g \mid A = 1, W_{-g}]] - \mathbb{E}_0[Y_g \mid A = 0, W_{-g}] \]

- Under certain (untestable) assumptions, interpretable as difference in methylation at site \(g \) with intervention and, possibly contrary to fact, the same under no intervention, controlling for neighboring sites.

- Provides a nonparametric (model-free) measure for those CpG sites impacted by a discrete intervention.

- Let the choice of parameter be determined by our scientific question of interest.
Let’s consider a simple target parameter: the average treatment effect (ATE):

\[
\Psi_g(P_0) = \mathbb{E}_{W,0}[\mathbb{E}_0[Y_g \mid A = 1, W_{-g}]] - \mathbb{E}_0[Y_g \mid A = 0, W_{-g}]
\]

Under certain (untestable) assumptions, interpretable as difference in methylation at site \(g\) with intervention and, possibly contrary to fact, the same under no intervention, controlling for neighboring sites.

Provides a nonparametric (model-free) measure for those CpG sites impacted by a discrete intervention.

Let the choice of parameter be determined by our scientific question of interest.
Nonparametric Variable Importance

- Let’s consider a simple target parameter: the average treatment effect (ATE):

\[\Psi_g(P_0) = \mathbb{E}_{W,0}[\mathbb{E}_0[Y_g \mid A = 1, W_{-g}]] - \mathbb{E}_0[Y_g \mid A = 0, W_{-g}]] \]

- Under certain (untestable) assumptions, interpretable as difference in methylation at site \(g \) with intervention and, possibly contrary to fact, the same under no intervention, controlling for neighboring sites.

- Provides a nonparametric (model-free) measure for those CpG sites impacted by a discrete intervention.

- Let the choice of parameter be determined by our scientific question of interest.
Nonparametric Variable Importance

- Let’s consider a simple target parameter: the average treatment effect (ATE):

\[\Psi_g(P_0) = \mathbb{E}_{W,0}[\mathbb{E}_0[Y_g \mid A = 1, W_{-g}]] - \mathbb{E}_0[Y_g \mid A = 0, W_{-g}] \]

- Under certain (untestable) assumptions, interpretable as difference in methylation at site \(g \) with intervention and, possibly contrary to fact, the same under no intervention, controlling for neighboring sites.

- Provides a *nonparametric* (model-free) measure for those CpG sites impacted by a discrete intervention.

- Let the choice of parameter be determined by our scientific question of interest.
Target Minimum Loss-Based Estimation

- We use *targeted minimum loss-based estimation* (TMLE), a method for inference in semiparametric infinite-dimensional statistical models.

- No need to specify a functional form or assume that we know the true data-generating distribution.

- Asymptotic linearity:
 \[
 \Psi_g(P_n^*) - \Psi_g(P_0) = \frac{1}{n} \sum_{i=1}^{n} IC(O_i) + o_P \left(\frac{1}{\sqrt{n}} \right)
 \]

- Limiting distribution:
 \[
 \sqrt{n}(\Psi_n - \Psi) \rightarrow N(0, \text{Var}(D(P_0)))
 \]

- Statistical inference:
 \[
 \Psi_n \pm Z_{\alpha} \cdot \frac{\sigma_n}{\sqrt{n}}
 \]
Target Minimum Loss-Based Estimation

- We use targeted minimum loss-based estimation (TMLE), a method for inference in semiparametric infinite-dimensional statistical models.

- No need to specify a functional form or assume that we know the true data-generating distribution.

- Asymptotic linearity:
 \[
 \Psi_g(P^*_n) - \Psi_g(P_0) = \frac{1}{n} \sum_{i=1}^{n} IC(O_i) + o_P \left(\frac{1}{\sqrt{n}} \right)
 \]

- Limiting distribution:
 \[
 \sqrt{n}(\Psi_n - \Psi) \to N(0, \text{Var}(D(P_0)))
 \]

- Statistical inference:
 \[
 \Psi_n \pm Z_\alpha \cdot \frac{\sigma_n}{\sqrt{n}}
 \]
Target Minimum Loss-Based Estimation

- We use targeted minimum loss-based estimation (TMLE), a method for inference in semiparametric infinite-dimensional statistical models.

- No need to specify a functional form or assume that we know the true data-generating distribution.

- Asymptotic linearity:

\[
\Psi_g(P^*_n) - \Psi_g(P_0) = \frac{1}{n} \sum_{i=1}^{n} IC(O_i) + o_P \left(\frac{1}{\sqrt{n}} \right)
\]

- Limiting distribution:

\[
\sqrt{n}(\Psi_n - \Psi) \rightarrow N(0, \text{Var}(D(P_0)))
\]

- Statistical inference:

\[
\Psi_n \pm z_\alpha \cdot \frac{\sigma_n}{\sqrt{n}}
\]
Target Minimum Loss-Based Estimation

- We use targeted minimum loss-based estimation (TMLE), a method for inference in semiparametric infinite-dimensional statistical models.

- No need to specify a functional form or assume that we know the true data-generating distribution.

- Asymptotic linearity:

\[
\psi_g(P_n^*) - \psi_g(P_0) = \frac{1}{n} \sum_{i=1}^{n} IC(O_i) + o_P \left(\frac{1}{\sqrt{n}} \right)
\]

- Limiting distribution:

\[
\sqrt{n}(\psi_n - \psi) \to N(0, \text{Var}(D(P_0)))
\]

- Statistical inference:

\[
\psi_n \pm z_{\alpha} \cdot \frac{\sigma_n}{\sqrt{n}}
\]
We use targeted minimum loss-based estimation (TMLE), a method for inference in semiparametric infinite-dimensional statistical models.

No need to specify a functional form or assume that we know the true data-generating distribution.

Asymptotic linearity:

$$\Psi_g(P_n^*) - \Psi_g(P_0) = \frac{1}{n} \sum_{i=1}^{n} IC(O_i) + o_P \left(\frac{1}{\sqrt{n}} \right)$$

Limiting distribution:

$$\sqrt{n}(\Psi_n - \Psi) \rightarrow N(0, Var(D(P_0)))$$

Statistical inference:

$$\Psi_n \pm z_\alpha \cdot \frac{\sigma_n}{\sqrt{n}}$$
Corrections for Multiple Testing

- Multiple testing corrections are critical. Without these, we systematically obtain misleading results.

- The Benjamini & Hochberg procedure for controlling the False Discovery Rate (FDR) is a well-established technique for addressing the multiple testing issue.

- We use a modified BH-FDR procedure to account for the pre-screening step of the proposed algorithm.

- This modified BH-FDR procedure for multi-stage analyses (FDR-MSA) works by adding a p-value of 1.0 for each site that did not pass pre-screening then performs BH-FDR as normal.
Corrections for Multiple Testing

- Multiple testing corrections are critical. Without these, we systematically obtain misleading results.

- The Benjamini & Hochberg procedure for controlling the False Discovery Rate (FDR) is a well-established technique for addressing the multiple testing issue.

- We use a modified BH-FDR procedure to account for the pre-screening step of the proposed algorithm.

- This modified BH-FDR procedure for multi-stage analyses (FDR-MSA) works by adding a p-value of 1.0 for each site that did not pass pre-screening then performs BH-FDR as normal.
Corrections for Multiple Testing

- Multiple testing corrections are critical. Without these, we systematically obtain misleading results.

- The Benjamini & Hochberg procedure for controlling the False Discovery Rate (FDR) is a well-established technique for addressing the multiple testing issue.

- We use a modified BH-FDR procedure to account for the pre-screening step of the proposed algorithm.

- This modified BH-FDR procedure for multi-stage analyses (FDR-MSA) works by adding a p-value of 1.0 for each site that did not pass pre-screening then performs BH-FDR as normal.
Corrections for Multiple Testing

- Multiple testing corrections are critical. Without these, we systematically obtain misleading results.

- The Benjamini & Hochberg procedure for controlling the False Discovery Rate (FDR) is a well-established technique for addressing the multiple testing issue.

- We use a modified BH-FDR procedure to account for the pre-screening step of the proposed algorithm.

- This modified BH-FDR procedure for multi-stage analyses (FDR-MSA) works by adding a p-value of 1.0 for each site that did not pass pre-screening then performs BH-FDR as normal.
Software package: R/methyvim

Figure: https://bioconductor.org/packages/methyvim

- Variable importance for discrete interventions.
- Future releases will support continuous interventions.
- Take it for a test drive!
Software package: R/methyvim

methyvim

platforms all downloads available posts 0 in Bioc < 6 months
build ok

DOI: 10.18129/B9.bioc.methyvim

Differential Methylation Analysis with Targeted Minimum Loss-Based Estimates of Variable Importance Measures

Bioconductor version: Release (3.6)

Figure: https://bioconductor.org/packages/methyvim

- Variable importance for discrete interventions.
- Future releases will support continuous interventions.
- Take it for a test drive!
Software package: R/methyvim

Figure: https://bioconductor.org/packages/methyvim

- Variable importance for discrete interventions.
- Future releases will support continuous interventions.
- Take it for a test drive!
Data analysis the methyvim way

Heatmap of Top 25 CpGs

Figure: http://code.nimahejazi.org/methyvim
Review: Summary

- DNA methylation data is *extremely* high-dimensional — we can collect data on 850K genomic sites with modern arrays!

- Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

- A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

- Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
Review: Summary

- DNA methylation data is extremely high-dimensional — we can collect data on 850K genomic sites with modern arrays!

- Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

- A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

- Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
Review: Summary

- DNA methylation data is *extremely* high-dimensional — we can collect data on 850K genomic sites with modern arrays!

- Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

- A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

- Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.
DNA methylation data is extremely high-dimensional — we can collect data on 850K genomic sites with modern arrays!

Normalization and QC are critical components of properly analyzing modern DNA methylation data. There are many choices of technique.

A relative scarcity of techniques for estimation and inference exists — analyses are often limited to the general linear model.

Statistical causal inference provides an avenue for answering richer scientific questions, especially when combined with modern advances in machine learning.

References II

Acknowledgments

Collaborators:
Mark van der Laan
Alan Hubbard
Lab of Martyn Smith
Lab of Nina Holland
Rachael Phillips

University of California, Berkeley

Funding source:
National Library of Medicine (of NIH): T32LM012417
Thank you.

Slides: goo.gl/JDhSEg
Notes: goo.gl/xabp3Q
Source (repo): goo.gl/m5As73
stat.berkeley.edu/~nhejazi
nimahejazi.org
twitter/@nshejazi
github/nhejazi