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Preview: Summary
▶ DNA methylation data is extremely high-dimensional

— we can collect data on 850K genomic sites with
modern arrays!

▶ Normalization and QC are critical components of
properly analyzing modern DNA methylation data.
There are many choices of technique.

▶ A relative scarcity of techniques for estimation and
inference exists — analyses are often limited to the
general linear model.

▶ Statistical causal inference provides an avenue for
answering richer scientific questions, especially when
combined with modern advances in machine learning.
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Motivation: Let’s meet the data

▶ Observational study of the impact of disease state on
DNA methylation.

▶ Phenotype-level quantities: 216 subjects, binary
disease status (FASD) of each subject, background
info on subjects (e.g., sex, age).

▶ Genomic-level quantities: ∼ 850, 000 CpG sites
interrogated using the Infinium MethylationEPIC
BeadChip by Illumina.

▶ Questions: How do disease status and differential
methylation relate? Is a coherent biomarker-type
signature detectable?
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DNA Methylation

Figure: https://www.illumina.com/techniques/sequencing/
methylation-sequencing.html (source)
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Data analysis? Linear Models!
▶ Standard operating procedure: For each CpG site

(g = 1, . . . ,G), fit a linear model:

E[yg] = Xβg

▶ Test the coefficent of interest using a standard t-test:

tg =
β̂g − βg,H0

sg

▶ Such models are a matter of convenience: does β̂g
answer our scientific questions? Perhaps not.

▶ Is consideration being given to whether the data could
have been generated by a linear model? Perhaps not.
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Motivation: Science Before Statistics

What is the effect of disease status
on DNA methylation at a specific CpG
site , controlling for the observed
methylation status of the neighbors
of the given CpG site?
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Data analysis? A Data-Adaptive Approach

1. Isolate a subset of CpG sites for which there is
cursory evidence of differential methylation.

2. Assign CpG sites into neighborhoods (e.g., bp
distance). If there are many neighbors, apply
clustering (e.g., PAM) to select a subset.

3. Estimate variable importance measure (VIM) at each
screened CpG site, with disease as intervention (A)
and controlling for neighboring CpG sites (W).

4. Apply a variant of the Benjamini & Hochberg method
for FDR control, accounting for initial screening.
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Pre-Screening — Pick Your Favorite Method

▶ The estimation procedure is computationally intensive
— apply it only to sites that appear promising.

▶ Consider estimating univariate (linear) regressions of
intervention on CpG methylation status. Fast, easy.

▶ Select CpG sites with a marginal p-value below, say,
0.01. Apply data-adaptive procedure to this subset.

▶ The modeling assumptions do not matter since the
we won’t be pursuing inference under such a model.

▶ Software implementation is extensible. Users are
encouraged to add their own. (It’s easy!)
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Too Many Neighbors? Clustering
▶ There are many options: k-means, k-medoids, etc.,

as well as many algorithmic solutions.

▶ For convenience, we use Partitioning Around
Medoids (PAM), a well-established algorithm.

▶ With limited sample sizes, the number of neighboring
sites that may be controlled for is limited.

▶ To faithfully answer the question of interest, choose
the neighboring sites that are the most representative.

▶ This is an optional step — it need only be applied
when there is a large number of CpG sites in the
neighborhood of the target CpG site.
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Nonparametric Variable Importance
▶ Let’s consider a simple target parameter: the average

treatment effect (ATE):

Ψg(P0) = EW,0[E0[Yg | A = 1,W−g]−E0[Yg | A = 0,W−g]]

▶ Under certain (untestable) assumptions, interpretable
as difference in methylation at site g with intervention
and, possibly contrary to fact, the same under no
intervention, controlling for neighboring sites.

▶ Provides a nonparametric (model-free) measure for
those CpG sites impacted by a discrete intervention.

▶ Let the choice of parameter be determined by our
scientific question of interest.
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Target Minimum Loss-Based Estimation
▶ We use targeted minimum loss-based estimation

(TMLE), a method for inference in semiparametric
infinite-dimensional statistical models.

▶ No need to specify a functional form or assume that
we know the true data-generating distribution.

▶ Asymptotic linearity:

Ψg(P∗
n)−Ψg(P0) =

1

n

n∑
i=1

IC(Oi) + oP

(
1√
n

)
▶ Limiting distribution:

√
n(Ψn −Ψ) → N(0,Var(D(P0)))

▶ Statistical inference:
Ψn ± zα · σn√

n 10
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Corrections for Multiple Testing

▶ Multiple testing corrections are critical. Without these,
we systematically obtain misleading results.

▶ The Benjamini & Hochberg procedure for controlling
the False Discovery Rate (FDR) is a well-established
technique for addressing the multiple testing issue.

▶ We use a modified BH-FDR procedure to account for
the pre-screening step of the proposed algorithm.

▶ This modified BH-FDR procedure for multi-stage
analyses (FDR-MSA) works by adding a p-value of
1.0 for each site that did not pass pre-screening then
performs BH-FDR as normal.
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Software package: R/methyvim

Figure: https://bioconductor.org/packages/methyvim

▶ Variable importance for discrete interventions.
▶ Future releases will support continuous interventions.
▶ Take it for a test drive!
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Data analysis the methyvim way

Figure: http://code.nimahejazi.org/methyvim 13
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