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Preview

1. Linear models are the standard approach for
analyzing microarray and next-generation
sequencing data (e.g., R package “limma”).

2. Moderated statistics help reduce false positives by
using an empirical Bayes method to perform standard
deviation shrinkage for test statistics.

3. Beyond linear models: we can assess evidence using
parameters that are more scientifically interesting
(e.g., ATE) by way of TMLE.

4. The approach of moderated statistics easily extends
to the case of asymptotically linear parameters.
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We’ll go over this summary again at the end of the talk. Hopefully, it
will all make more sense then.



Motivation: Let’s meet the data
▶ Observational study of the impact of occupational

exposure (to benzene), with data collected on 125
subjects and roughly 22,000 biomarkers.

▶ Biomarkers of interest are in the form of miRNA,
assessed using the Illumina Human Ref-8 BeadChips
platform.

▶ Occupational exposure to benzene reported as
discrete values of interest (to epidemiologists): none,
< 1ppm, > 5ppm.

▶ Background (phenotype-level) information available
on each subject, including age, sex, smoking status.
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This is not an atypical data set by modern standards in epidemiology,
certainly not the standard for molecular biology. That is, sample sizes
are usually much smaller in experiments examining biological
processes.



Data analysis? Linear models!
▶ For each biomarker (b = 1, . . . ,B), fit a linear model:

E[yb] = Xβb

▶ Generally, we have a particular model coefficent in
which we are interested (e.g., effect of benzene on
biomarker expression).

▶ Controlling for baseline covariates, batch effects, and
potential confounders happens by adding terms to
the linear model.

▶ Test the coefficent of interest using a standard t-test:

tb =
β̂b −βb,H0

sb
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There’s nothing particularly wrong with this approach. It’s exactly
what we would come up with after a first-year statistics course. In
practice, there are many issues: (1) we are forced to specify a
functional form, the linear model; (2) we end up with unstable
variance estimates that sharply increase the number of false positives
detected, even after multiple testing corrections.



LIMMA: Linear Models for Microarray Data
▶ When the sample size is small, s2

b may be so small
that small differences (β̂b −βb,H0) lead to large tb.

▶ Uncertainty in the variance is an acute problem when
the sample size is small.

▶ This results in false positives. Smyth proposes we get
around this by an empirical Bayes shrinkage of the s2

b.

▶ Test the coefficent of interest with a moderated t-test:

t̃b =
β̂b −βb,H0

s̃b
, s̃2

b =
s2

bdb +s2
0d0

db +d0

▶ Eliminates large t-statistics merely from very small sb.
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The substantive contribution here is the use of an empirical Bayes
method to shrink the standard deviation across all of the biomarkers
such that we obtain a larger (but accurate) estimate that reduces the
number of test statistics that are marked as significant by low s2

b
estimates alone.

Note that this is not the exact formulation of the moderated
t-statistic as given by Smyth (his derivation assumes a hierarchical
model; see original paper if interested). This formulation does a good
enough job to help us see the bigger picture.



Beyond linear models
▶ It’s not always desirable to specify a functional form:

perhaps we can do better than linear models?

▶ Such models are a matter of convenience and not
honest scientific practice: does β̂b really answer our
questions?

▶ We can do better by using parameters motivated by
causal models (n.b., these will reduce to “variable
importance measures” in our case).

▶ As long as the parameters we seek to estimate have
asymptotically linear estimators, we can readily apply
the approach of moderated statistics.
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Linear models are convenient for communicating results — that is, all
scientists are trained to understand them. This means they provide a
basic way of easily communicating between statisticians and
collaborators. That said, doesn’t it seem a bit odd to use such
elementary models to analyze complex biological sequencing data?
We’re using old statistical technology to analyze classes of data that
have only recently become available.



Target parameters for complex questions
▶ Rather than being satisfied with β̂b as an answer to

our questions, let’s consider a simple target
parameter: the average treatment effect (ATE):
Ψb(P0) = EW,0[E0[Yb | A = ahigh,W]−E0[Yb | A = alow,W]]

▶ No need to specify a functional form or assume that
we know the true data-generating distribution P0.

▶ Parameters like this can be estimated using targeted
minimum loss-based estimation (TMLE).

▶ Asymptotic linearity:

Ψb(P∗
n)−Ψb(P0) =

1
n

n
∑
i=1

IC(Oi)+oP(
1√
n

)
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By allowing scientific questions to inform the parameters that we
choose to estimate, we can do a better job of actually answering the
questions of interest to our collaborators. Further, we abandon the
need to specify the functional relationship between our outcome and
covariates; moreover, we can now make use of advances in machine
learning.



Targeted Minimum Loss-Based Estimation
▶ TMLE produces a well-defined, unbiased, efficient

substitution estimator of target parameters of a
data-generating distribution.

▶ Iterative procedure (though there is a one-step now)
that updates an initial estimate of the relevant part
(Q0) of the data generating distribution (P0).

▶ Like corresponding A-IPTW estimators, removes
asymptotic residual bias of initial estimator for the
target parameter. If it uses a consistent estimator of
g0 (nuisance parameter), it is doubly robust.

▶ We can estimate the target parameter:

Ψb(P∗
n) =

1
n

n
∑
i=1

[Q(b,1)
n (Ai = ah,Wi)−Q(b,1)

n (Ai = al,Wi)]
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Natural use of machine learning methods for the estimation of both
Q0 and g0. Focuses effort to achieve minimal bias and asymptotic
semiparametric efficiency bound for the variance, but still get
inference (with some assumptions).



Inference with influence curves
▶ The influence curve for the estimator is:

ICb,n(Oi) =

(
1(Ai = ah)

gn(ah | Wi)
− 1(Ai = al)

gn(al | Wi)

)

· (Yb,i − Q̄(b,1)
n (Ai,Wi)) + Q̄(b,1)

n (ah,Wi)

− Q̄(b,1)
n (al,Wi) − Ψb(P∗

n)
(1)

▶ Sample variance of the influence curve:
s2(ICn) = 1

n ∑n
i=1 (ICn(Oi))

2

▶ Use sample variance to estimate the standard error:

sen =

√
s2(ICn)

n
▶ Use this for inference — that is, to derive uncertainty

measures (i.e., p-values, confidence intervals).
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Using the influence curve representation, we can obtain all of the
standard objects of statistical interest, but for more interesting
parameters.



Moderated statistics for target parameters
▶ One can define a standard t-test statistic for an

estimator of an asymptotically linear parameter (over
b = 1, . . . ,B) as:

tb =

√
n(Ψb(P∗

n)−Ψ0)

sb(ICb,n)

▶ This naturally extends to the moderated t-statistic of
Smyth:

t̃b =

√
n(Ψb(P∗

n)−Ψ0)

s̃b
where the posterior estimate of the variance of the
influence curve is

s̃2
b =

s2
b(ICb,n)db +s2

0d0
db +d0
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• Consider this is repeated for b = 1, . . . ,B different biomarkers, so
that one has, for each b:

Ψb(Q∗
b,n),S2

b(ICb,n),

estimate of variable importance and standard error for all B.

• Propose an existing joint-inferential procedure that can add
some finite-sample robustness to an estimator that can be highly
variable.



An influence curve transform
▶ Need the estimate for each biomarker (b) and the IC

for every observation for that biomarker, repeating for
all b = 1, . . . ,B.

▶ Essentially, transform original data matrix such that
new entries are:

Y∗
b,i = ICb,n(Oi;Pn)+Ψb(P∗

n)

▶ Since E[ICb,n] = 0 across the columns (units) for each
b, the average will be the original estimate Ψb(P∗

n).

▶ For simplicity, let’s assume the null value is Ψ0 = 0 for
all b. Then, applying the moderated t-test to Y∗

b,i will
generate corrected, conservative test statistics t̃b.
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Just like the one-sample problem for estimation of parameter with
associated standard error from the influence curve.



Why moderated statistics in this context?

▶ Often times, such data analyses are based on
relatively small samples.

▶ To get a data-adaptive estimate, with standard
implementation of these estimates, standard errors
can be non-robust.

▶ Practically, “significant” estimates of variable
importance measures may be driven by poorly and
underestimated s2

b(ICb,n).
▶ Moderated statistics shrink these s2

b(ICb,n) (making
them bigger), thus taking biomarkers with small
parameter estimates but very small s2

b(ICb,n) out of
statistical significance.
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Essentially, we have the same concerns about using variable
importance measures that we did about using the standard t-test —
that is, non-robut estimates of the standard error of the estimator of
the target parameter can cause erroneous identification of biomarkers
(false positives). To reduce this, we can apply the same machinery
that we did in the case of the standard t-test for our naive linear
modeling approach.



Software implementation: “R/biotmle”
▶ An R package that “facilitates biomarker discovery by

generalizing the moderated t-statistic of Smyth for
use with asymptotically linear parameters.”

▶ Check it out on GitHub: nhejazi/biotmle
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Use it. File an issue. Help make it better!



Data analysis with “R/biotmle”
▶ Observational study of the impact of occupational

exposure (to benzene), with data collected on 125
subjects and roughly 22,000 biomarkers.

▶ Baseline covariates W: age, sex, smoking status; all
were discretized.

▶ Treatment A is degree of Benzene exposure: none,
< 1ppm, and > 5ppm.

▶ Outcome Y is miRNA expression, median normalized.

▶ Estimate the parameter:
Ψb(P∗

n) = E[E[Yb | A = max(A),W]−E[Yb | A = min(A),W]]

▶ Apply moderated t-test as previously discussed.
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We are really just walking through the mechanistic procedure we
outline, applying to the data set that served as our motivating
example.



Analysis results I: Uncorrected tests
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This is promising — we’re not seeing too many biomarkers identified
as “significant.” But, we do have to correct for those 22,000 tests
that we just performed.



Analysis results II: Corrected tests
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After application of the Benjamini-Hochberg procedure for controlling
the False Discovery Rate (FDR).



Analysis results III: Volcano plot
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Taking a look at a standard volcano plot adapted to the ATE quickly
reveals that we really are not identifying any biomarkers with low fold
change in the ATE as significant erroneously.



Analysis results IV: Heatmap of IC estimates
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We can use our influence curve transform to identify biomarkers that
are top contributers to the target parameter of interest — the ATE in
this case.



Review

1. Linear models are the standard approach for
analyzing microarray and next-generation
sequencing data (e.g., R package “limma”).

2. Moderated statistics help reduce false positives by
using an empirical Bayes method to perform standard
deviation shrinkage for test statistics.

3. Beyond linear models: we can assess evidence using
parameters that are more scientifically interesting
(e.g., ATE) by way of TMLE.

4. The approach of moderated statistics easily extends
to the case of asymptotically linear parameters.
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It’s always good to include a summary.
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Here’s where you can find me, as well as the slides for this talk.


