A *Practical* Tour of Ensemble (Machine) Learning

Nima Hejazi¹ Evan Muzzall²

¹Division of Biostatistics, University of California, Berkeley ²D-Lab, University of California, Berkeley

slides: https://goo.gl/wWa9QC

Ensemble Learning – What?

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

- Wikipedia, November 2016

Ensemble Learning – Why?

- Ensemble methods outperform individual (base) learning algorithms.
- By combining a set of individual learning algorithms using a *metalearning* algorithm, ensemble methods can approximate complex functional relationships.
- When the true functional relationship is not in the set of base learning algorithms, ensemble methods approximate the true function well.
- *n.b.*, ensemble methods can, even asymptotically, perform only as well as the best weighted combination of the candidate learners.

Ensemble Learning – How?

Common strategies for performing ensemble learning:

- Bagging reduces variance and increases accuracy; robust against outliers; often used with decision trees (*i.e.*, Random Forest).
- Boosting reduces variance and increases accuracy; not robust against outliers or noise; accomodates any loss function.
- Stacking used in combining "strong" learners; requires a *metalearning* algorithm to combine the set of learners.

Introduction to Super Learner

- 1996 paper "Stacked Regressions" (L. Breiman) introduced the notion of model stacking using k-fold cross-validation, the precursor to the modern Super Learner algorithm.
- 2007 paper "Super Learner" (van der Laan et al.) worked out theoretical details on the optimality of stacking. Before this, the reasons for the superb performance of stacking were unknown.
- The Super Learner algorithm learns the optimal combination of the base learner fits in a manner that is provably asymptotic optimal.

Interlude: Cross-Validation

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10

The validation set rotates V times such that each set is used as the validation set once.

Optimality of Super Learner

For a random variable O = (W, A, Y), let the **oracle** selector be a rule that picks the algorithm with the lowest cross-validated risk under the *true probability distribution* P_0 . The **oracle selector** is unknown because it depends on observed data <u>and</u> the truth.

Asymptotic results prove that in realistic scenarios (where none of the algorithms represent the true relationship), the "discrete super learner" performs *asymptotically as well as* the oracle selector (the best estimator given the algorithms in the collection).

The Discrete Super Learner

The Super Learner Algorithm

Ensembles with Super Learner

R Package: "SuperLearner"

- Implements the Super Learner prediction method (stacking) and contains a library of prediction algorithms to be used in the Super Learner.
- Provides a clean interface to numerous algorithms in R and defines a consistent API for extensibility.

R Package: "h2oEnsemble"

Extension to the "h2o" R package that allows the user to train an ensemble in the H2O cluster using any of the supervised machine learning algorithms in H2O.

- Uses data-distributed and parallelized Java-based algorithms for the ensemble.
- All training and data processing are performed in the high-performance H2O cluster.
- ► Supports regression and binary classification.

Summary

- 1. Ensemble methods combine individual learning algorithms to approximate complex relationships.
- 2. Super Learning (stacking) represents an optimal system for combining individual learning algorithms into an ensemble learner.
- 3. The "SuperLearner" R package provides a well-maintained implementation of the the Super Learner algorithm.
- 4. The "h2oEnsemble" R package provides access to a range of ensemble methods, developed by H20.ai.

Slides: http://goo.gl/wWa9QC

GitHub: nhejazi/talk-h2oSL-THW-2016