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OVERVIEW
• Vaccine research aims to characterize and

validate immune correlates of protection
(CoPs), to elucidate immunologic mecha-
nisms and to serve as surrogate endpoints.

• Four statistical frameworks advanced to
evaluate candidate CoPs in RCTs [1].

• We present one such method, stochastic-
interventional vaccine efficacy (SVE) [2], based
on the causal effects of modified treatment
policies (MTPs) [3, 4] applied to CoPs.

• The txshift R package [5] implements
efficient estimators of counterfactual mean
of an MTP, with corrections for outcome-
dependent, two-phase sampling [6].

COVPN VACCINE TRIALS
• COVE Phase 3 trial of Moderna vaccine

(mRNA-1273) versus placebo
– L: Baseline risk score, minority race/ethnicity

indicator, high risk indicator
– A: Randomized two doses Days 1, 29 (D1, D29)
– S: D29, D57 measures of five candidate CoPs
– Y : COVID-19 by 100 (129) days post-D57 (D29)

• ENSEMBLE Phase 3 trial of Janssen vaccine
(Ad26.COV2.S) versus placebo

– L: Baseline risk score, region (e.g., N. America)
– A: Randomized single dose D1
– S: D29 measures of three candidate CoPs
– Y : COVID-19 by 181 days post-D29

• Goal: Evaluate separately candidate CoPs in
the COVE and ENSEMBLE vaccine trials.
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DATA ANALYSIS & RESULTS
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(a) SVE of D29 PsV-nAb in COVE.
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(b) SVE of D57 PsV-nAb in COVE.
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(c) SVE of D29 PsV-nAb in ENSEMBLE (all regions).
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(d) SVE of D29 PsV-nAb in ENSEMBLE (Latin America).

Figure 1: SVE of pseudovirus neutralizing antibody (PsV-nAb) at D29, D57 in COVE (upper), ENSEMBLE (lower). TML-based
point estimates (black δ = 0, grey δ ̸= 0) with EIF-based SE estimates, summarized (dashed lines) by working MSM [7, 6]. δ
chosen based on structural positivity: for δ < 0, S + δ above assay lower detection limit (LLOD) for at least 90% of participants.

STOCHASTIC-INTERVENTIONAL VACCINE EFFICACY
• Let ideal study data be i.i.d. samples of X = (L,A, S, Y ) ∼ P0 ∈ M, for P0 an unknown data-

generating distribution in the nonparametric model M, i.e., no restrictions on the form of P0.
– L baseline covariates, A randomized treatment assignment (vaccine, placebo), S measure of CoP at given time point

(D29, D57), and Y indicator of COVID-19 by pre-defined end of follow-up.
– Case-cohort sampling used to measure candidate CoPs S, so only available in an outcome-dependent, two-phase

sample, i.e., observed study data are i.i.d. samples of O = (L,A,BS, Y,B), where B is a binary indicator of selection
into the case-cohort sample; this necessitates incorporating a correction for estimator construction [8, 9, 6].

• SVE statistical parameter contrasts adjusted mean under an MTP against risk in placebo arm:

ψSVE
δ ≡ ΨSVE

δ (P0) := 1− EL[P(Y = 1 | S = S + δ, A = 1, L = l) | A = 1, L]

EL[P(Y = 1 | A = 0, L = l) | L]
, (1)

where numerator is counterfactual risk under an MTP shifting S to S + δ in vaccine arm (A = 1)
under identification assumptions and denominator is counterfactual risk in placebo arm (A = 0) by
randomization. Identification assumptions (for numerator quantity) under NPSEM-IE include

– no unmeasured confounding: Y S+δ ⊥⊥ S | A = 1, L (possibly stronger than required, per [3]), and
– positivity: (l, s) ∈ suppP0

(L, S) =⇒ (l, s+ δ) ∈ suppP0
(L, S) for fixed δ and A = 1.

• The estimator ΨSVE
δ (P̂n) is regular and asymptotically linear (RAL) in the model M, admitting

√
n(ΨSVE

δ (P̂n)−ΨSVE
δ (P0)) =

1√
n

n∑
i=1

D⋆(P0)(Oi) + oP(1/
√
n) , (2)

where D⋆(P0)(O) is the efficient influence function (EIF) of RAL estimators of ψSVE
δ wrt P0 ∈ M.

• Developed and implemented asymptotically efficient one-step and targeted minimum loss (TML)
estimators [6] of ΨSVE

δ (P0), which use the EIF in distinct bias correction steps and are both
– doubly robust consistent when two of four nuisance parameters are appropriately well-modeled (e.g., using ensemble

machine learning [10]) such that product of convergence rates of pairs of nuisance estimators is oP(1/
√
n), and

– asymptotically semi-parametric efficient when all four nuisance parameters are appropriately well-modeled.

• Applied the TML estimator of the SVE parameter, Eqn. (1), to evaluate candidate CoPs in the
COVE and ENSEMBLE vaccine trials [2, 11]; results displayed for a single CoP in Figure 1.

• SVE to be available in the vaccine R package (https://CRAN.R-project.org/package=vaccine).


