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OVERVIEW & MOTIVATIONS
1. We consider the problem of efficiently es-

timating survival prognosis under a data
structure complicated by the presence of
immortal time bias.

2. The matter of efficient estimation under
a bias induced by time-dependent risks
presents a novel challenge that received sur-
prisingly meager attention in the literature.

3. We compare parametric and nonparametric
estimators of survival, including variations
of the Cox proportional hazards model and
the Kaplan-Meier estimator, evaluating the
efficiency of each in the estimation of the
multiple survival processes that occur un-
der this data-generating process.

4. We are given survival times for patients
with a single primary melanoma, and some
of the patients develop a second primary
melanoma before dying.

INTRODUCTION & DATA
• Question of interest: How does the second

melanoma change the survival prognosis
of the patients?

• In order to prepare for a real data anal-
ysis, we simulate a data structure that
matches what we expect — that is, the data-
generating process is the the Cox propor-
tional hazards model.

• Survival time T : time before the actual
death of the patient,

• Time until second melanoma appears: U ,

• Baseline hazard in absence of second
melanoma: λ0(t),

• Time-varying covariate: Z(t) = I(t > U).

• Constant baseline hazard λ0 = λ.

• A second melanoma doubles the hazard.

METHODOLOGY II
• The second approach is non-parametric and uses Kaplan-Meier’s estimator defined as

Ŝ(t) =
∏

i:t(i)<t

(
1− di

ni

)
, t ≥ 0,

where di and ni are the respective numbers of death and individual at risks at the ordered time t(i), i =
1, . . . , n.

• Youlden et al. [1] only uses patients for whom no occurrence of a second melanoma is observed,
in the estimation of S1 and ignores the other patients, which causes a bias.

• Jewell corrects their estimator by including all the patients in the study.

• The ones that were excluded by Youlden et al. [1] still contain information about λ1: those are
censored observations at time U .
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RESULTS & DISCUSSION
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Comparison of Estimators for S1

Figure 1: Average performance of estimators for S1 for
a sample of size n = 1000, over about 300 simulations.

• The Kaplan-Meier estimator proposed by
Youlden displays obvious bias.

• The estimates of the survival curve pro-
duced by Cox regression and the Kaplan-
Meier estimator with the Jewell correction
show no such bias.

• Under the Cox model, Cox regression will
outperform other estimators — it draws
upon information across both subject groups
over all time points.

• The Kaplan-Meier estimator exhibits a slight
divergence from the truth in the right tail
due to a well-studied finite-sample bias
caused by censored observations.

• We display results for n = 1000 since this
sample size is closest to that from the obser-
vational medical study we analyze.

METHODOLOGY I
• Time origin for all sujects: date of their first or index primary melanoma (PM).

• Two hazard functions of essential interest:

• λ1(t) — hazard of an individual, alive at time t who has only experienced one PM.

• λ2(t) — hazard of an individual, alive at time t who has experienced more than one PM.

• Data: of n = n1 + n2 subjects.

• The first n1 only experience one PM before death at the observed time ti. The other n2 experience
a second PM at the observed time uj and then die at observed time tj . It is possible to consider
censored observations for both sets of subjects but we do not discuss this here for the sake of
notation.

• We compare three approaches of this problem, namely, the Cox proportional hazards model, the
method presented in Youlden et al. [1] and its correction by Jewell.

The basic proportional hazards model is a semi-parametric model for the hazard function defined by

λ (t;Z = z) = λ0(t) exp
(
βT z

)
, t ≥ 0. (1)

where λ0(·) is the baseline hazard function is estimated non-parametrically, while β is the vector of
regression coefficients and is estimated parametrically using Cox’s partial likelihood.


