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OVERVIEW & MOTIVATIONS INTRODUCTION & DATA METHODOLOGY 11

. We consider the problem of efficiently es- e Question of interest: How does the second e The second approach is non-parametric and uses Kaplan-Meier’s estimator defined as
timating survival prognosis under a data melanoma change the survival prognosis
structure c;ompl.mated by the presence of of the patients? S(t) = H | _ d; >0,
immortal time bias. x 1

In order to prepare for a real data anal- i:t (1) <t

' The. ma.tter of eff1c1ept estimation un.der ysis, we simulate a data strl.,lcture that where d; and n; are the respective numbers of death and individual at risks at the ordered time t(*), i =
a bias induced by time-dependent risks matches what we expect — that is, the data- 1
presents a novel challenge that received sur- generating process is the the Cox propor- o
prisingly meager attention in the literature. tional hazards model. e Youlden et al. [1] only uses patients for whom no occurrence of a second melanoma is observed,

. , , , , in the estimation of S; and ignores the other patients, which causes a bias.
. We compare parametric and nonparametric Survival time 7 time before the actual

estimators of survival, including variations death of the patient, o Jewell corrects their estimator by including all the patients in the study.
of the Cox proportional hazards model and
the Kaplan-Meier estimator, evaluating the
efficiency of each in the estimation of the Baseline hazard in absence of second
multiple survival processes that occur un- melanoma: Ao (t),

der this data-generating process.

Time until second melanoma appears: U, e The ones that were excluded by Youlden et al. [1] still contain information about A;: those are
censored observations at time U.

RESULTS & DISCUSSION

Time-varying covariate: Z(t) = I(t > U).
. We are given survival times for patients

with a Single primary melanOma, and some Constant baseline hazard >\O = A Comparison of Estimators for S1 e The Kaplan-Meier estimator proposed by
of the patients develop a second primary
melanoma before dying.
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A second melanoma doubles the hazard. Youlden displays obvious bias.

e The estimates of the survival curve pro-
duced by Cox regression and the Kaplan-
Meier estimator with the Jewell correction
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METHODOLOGY I

. . . . . . g show no such bias.
e Time origin for all sujects: date of their first or index primary melanoma (PM). £
. o “C_:UO-SO- e Under the Cox model, Cox regression will
e Two hazard functions of essential interest: % \ outperform other estimators — it draws
e )\ (t) —hazard of an individual, alive at time ¢ who has only experienced one PM. \ upon 1nf(?r matpn across both subject groups
025~ \\\ over all time points.
A2 (t) — hazard of an individual, alive at time t who h ' d th PM. o ~~ . . o .
o \o(1) azard of an individual, alive at time ¢ who has experienced more than one Aouiden) e The Kaplan-Meier estimator exhibits a slight
e Data: of n = ny + no subjects. . e divergence from the truth in the right tail
- . - — - - due to a well-studied finite-sample bias
e The first n; only experience one PM before death at the observed time ¢;. The other ny, experience 0 N T otmew - - caused by censored observations.
a second PM at the observed time u; and then die at observed time ¢,. It is possible to consider - A f onts P | | |
censored observations for both sets of subjects but we do not discuss this here for the sake of igure 1: Average pertormance of estimators for 5, tor o We dlspl.ay .results for n = 1000 since this
n()tati()n. d Sample of size n = 1000, over about 300 simulations. Sample S1Ze 1S CIOSQS’C to that frOm the Obser_

vational medical study we analyze.
e We compare three approaches of this problem, namely, the Cox proportional hazards model, the
method presented in Youlden et al. [1] and its correction by Jewell.

The basic proportional hazards model is a semi-parametric model for the hazard function defined by PRINCIPAL REFERENCES CONTACT INFORMATION
[1] D R Youlden, Peter D Baade, H Peter S , Phili H Youl, Michael G Kimlin, ] F . 2
)\ (t, Z — Z ) — )\O (t) eXp ( 5 TZ ) ] t 2 O (1) Aiatrllre}z, A(;elie EnGrgeir, anda aKijlrash Ei(fosi*)(})l’ceerhranli.lpl"}zn—yezl);1 surxlfcijve?leafterlgtiﬁip(l)ea rilr?f/}a— N' He] azZl. NHE] AZI@BERKELEY°EDU

ive melanomas i rse than after a single melanoma: lation-based study. ] [ of o
Investigatve Dermatology, 13611y2270-2256, 2016, ¥ s emate - K. Benac: BENAC@BERKELEY.EDU

where \y(-) is the baseline hazard function is estimated non-parametrically, while (5 is the vector of Wei-Yann Tsai, Nicholas P Jewell, and Mei-Cheng Wang. A note on the product-limit estimator N. P. Jewell: JEWELL@BERKELEY.EDU
under right censoring and left truncation. Biometrika, 74(4):883-886, 1987.

regression coefficients and is estimated parametrically using Cox’s partial likelihood. Steven M Snapinn, QI Jiang, and Boris lglewicz. Illustrating the impact of a time-varying

covariate with an extended kaplan-meier estimator. The American Statistician, 59(4):301-307,
2005.




