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OVERVIEW & MOTIVATIONS

. We introduce a general nonparametric tech-
nique to assess the effects of continuous
exposures, extending the methodology for
use with data generated by modern experi-
ments in high-dimensional biology.

. Such nonparametric variable importance
measures (NPVI) may be used to replace
their parametric counterparts, which are
standard practice in genomics.

. NPVI captures the expected difference in
outcome/response, based on differences in
receiving a continuous exposure against a
so-called “null range” of said exposure.

. We apply the proposed method to analyz-
ing DNA methylation data from a epidemi-
ologic study, providing a sample of results
for differentially methylated CpG sites.

INTRODUCTION & DATA

e Data was generated by the Infinium Hu-

manMethylation450 BeadChip platform,
providing consistent measurements of

nearly 450, 000 CpG sites.

Data was made available on over 200 sub-
jects, with relevant data on baseline char-
acteristics, 450K methylation data collected
from fetal blood, and outcome (IQ) scores
assessed at several intervals across early
years of development.

The exposure of interest is a vector of 450K
CpG methylation measures, with each array
subjected to median normalization.

The outcome of interest is a vector of IQ
scores (from a particular type of test) as-
sessed several years after DNA methylation
was measured.
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To make this procedure feasible for use in high-dimensional biology, several adjustments are necessary:
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e Use of screening procedures (e.g., simple linear models) helps to reduce the set of loci of interest

to a computationally manageable number.

e A modified procedure for controlling the False Discovery Rate (FDR) with multi-stage analyses

(FDR-MSA) [1] may be used to control the FDR at the same rate as if all genomic loci were tested.

e Methods to control the FDR with related hypotheses may be integrated into this framework.

Future extensions for combining multiple outcomes:

e The outcomes of interest are IQ scores measured by 8 different tests. As part of future work, we
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are interested in ways to combine several cognitive outcome measures into one outcome.
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The general roadmap for using NPVI in problems of high-dimensional biology is as follows:
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e We observe n independent copies O; = (W;, X;,Y;)"_; of the observed data structure O ~ Py € M,
where M is possibly a nonparametric (infinite-dimensional) model.

RESULTS & DISCUSSION

Table 1: Sample results for 10 CpG sites using the TMLE
procedure to estimate the NPVI parameter.

e The NPVI parameter is V(P) = argmin g Lp[(Y —Ep(Y[X = 20, W) — B(X — 20))”]

e By applying the TMLE for estimating NPV],
the impact of DNA methylation on a

- Y(P) = =* XOP)XW) O OW))] 5 TMLE is available (Proposition 1). [4]

Ep(X?) U,;(P,) raw p-value adjusted p-value phenotype-level outcome (e.g., IQ at age 7)
- Neglecting W, we have a different mapping: #(F) = argming _pEp[(Y — 5X )?] = %; (())((32/)) 1 2.896E+00 3.920E-09 4.263E-04 may be nonparametrically estimated.
— Both ¥ and F are pathwise differentiable, with known influence curves in semiparametics 2 2.887E-01 6.850E-01 1.000E+00 The NPVI parameter is a complex (but con-
and in closed form. 3 1.417E+01  2.170E-141 3.147E-136 venient) substitute for estimating the rela-
4 1.679E+00 1.730E-01 1.000E+00 tionships involving continuous exposures.
To estimate ¥ (P), begin by initially estimating P with P,,g (setting £ = 0), then iteratively: 5 1.132E+00 2.530E-02 1.000E+00 Future work will make use of nonparamet-
. | . » apk(o | 6 -1.778E+00  4.438E-292 1.931E-286 ric methods for combining related outcomes
1. Construct a 1-dimensional model P (¢) : |e| < ||s]|o, € M by setting ip = 1 + es with 7 4.136E+00 5 903E-05 1.000E+00 into single scores.
s = V¥pr. 8 -8.347E-01  1.838E-185 3.998E-180
2. Compute the corresponding MLE €* for P*™1 := P%(¢k), updating k < k + 1. 9  2.589E-01 8.540E-01 1.000E+00
10  1.895E+00 3.740E-05 1.000E+00

3. By substitution, form the targeted minimum loss-based estimator v,, = U(PX) where K is the
last value of k (obtained when a stopping criterion is met).
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