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OVERVIEW & MOTIVATIONS
1. We introduce a general nonparametric tech-

nique to assess the effects of continuous
exposures, extending the methodology for
use with data generated by modern experi-
ments in high-dimensional biology.

2. Such nonparametric variable importance
measures (NPVI) may be used to replace
their parametric counterparts, which are
standard practice in genomics.

3. NPVI captures the expected difference in
outcome/response, based on differences in
receiving a continuous exposure against a
so-called “null range” of said exposure.

4. We apply the proposed method to analyz-
ing DNA methylation data from a epidemi-
ologic study, providing a sample of results
for differentially methylated CpG sites.

INTRODUCTION & DATA
• Data was generated by the Infinium Hu-

manMethylation450 BeadChip platform,
providing consistent measurements of
nearly 450, 000 CpG sites.
• Data was made available on over 200 sub-

jects, with relevant data on baseline char-
acteristics, 450K methylation data collected
from fetal blood, and outcome (IQ) scores
assessed at several intervals across early
years of development.
• The exposure of interest is a vector of 450K

CpG methylation measures, with each array
subjected to median normalization.
• The outcome of interest is a vector of IQ

scores (from a particular type of test) as-
sessed several years after DNA methylation
was measured.

METHODOLOGY II
To make this procedure feasible for use in high-dimensional biology, several adjustments are necessary:

• Use of screening procedures (e.g., simple linear models) helps to reduce the set of loci of interest
to a computationally manageable number.

• A modified procedure for controlling the False Discovery Rate (FDR) with multi-stage analyses
(FDR-MSA) [1] may be used to control the FDR at the same rate as if all genomic loci were tested.

• Methods to control the FDR with related hypotheses may be integrated into this framework.

Future extensions for combining multiple outcomes:

• The outcomes of interest are IQ scores measured by 8 different tests. As part of future work, we
are interested in ways to combine several cognitive outcome measures into one outcome.

• Let ψj(W ) = E(Yj | X), where the outcome is defined as Y = (Y1, . . . , YJ).
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RESULTS & DISCUSSION

Table 1: Sample results for 10 CpG sites using the TMLE
procedure to estimate the NPVI parameter.

Ψ̂j(Pn) raw p-value adjusted p-value
1 2.896E+00 3.920E-09 4.263E-04
2 2.887E-01 6.850E-01 1.000E+00
3 1.417E+01 2.170E-141 3.147E-136
4 1.679E+00 1.730E-01 1.000E+00
5 1.132E+00 2.530E-02 1.000E+00
6 -1.778E+00 4.438E-292 1.931E-286
7 4.136E+00 5.903E-05 1.000E+00
8 -8.347E-01 1.838E-185 3.998E-180
9 2.589E-01 8.540E-01 1.000E+00

10 1.895E+00 3.740E-05 1.000E+00

• By applying the TMLE for estimating NPVI,
the impact of DNA methylation on a
phenotype-level outcome (e.g., IQ at age 7)
may be nonparametrically estimated.
• The NPVI parameter is a complex (but con-

venient) substitute for estimating the rela-
tionships involving continuous exposures.
• Future work will make use of nonparamet-

ric methods for combining related outcomes
into single scores.

METHODOLOGY I
The general roadmap for using NPVI in problems of high-dimensional biology is as follows:

• We observe n independent copiesOi = (Wi, Xi, Yi)
n
i=1 of the observed data structureO ∼ P0 ∈M ,

where M is possibly a nonparametric (infinite-dimensional) model.

• The NPVI parameter is Ψ(P ) = argminβ∈REP [(Y − EP (Y |X = x0,W )− β(X − x0))2]

– Ψ(P ) = EP [X(θ(P )(X,W )−θ(P )(0,W ))]
EP (X2) , a TMLE is available (Proposition 1). [4]

– Neglecting W, we have a different mapping: F(P ) = argminβ∈REP [(Y − βX)2] ≡ EP (XY )
EP (X2)

– Both Ψ and F are pathwise differentiable, with known influence curves in semiparametics
and in closed form.

• To estimate Ψ(P ), begin by initially estimating P with P 0
n (setting k = 0), then iteratively:

1. Construct a 1-dimensional model P kn (ε) : |ε| < ‖s‖−1∞ ⊂ M by setting dPk
n (ε)
dPk

n
= 1 + εs with

s = ∇ΨPk
n

.
2. Compute the corresponding MLE εkn for P k+1

n := P kn (εkn), updating k ← k + 1.
3. By substitution, form the targeted minimum loss-based estimator ψn = Ψ(PKn ) whereK is the

last value of k (obtained when a stopping criterion is met).

• Apply the NPVI estimator to the observed data (with empirical measure Pn):
Ψ̂j(Pn) =

EPn [X(θ(Pn)(X,W )−θ(Pn)(0,W ))]
EPn (X2) , for j indexing genomic loci of interest.

• To estimate such a parameter at each genomic locus, we define a cutoff for the “null range” of NPVI
as a particular percentile of the outcome at a given locus (e.g., 20th), though a general procedure
for defining a cutoff in a data adaptive manner is available [3].


