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Extending Condorect’s Jury Theorem

• We want to consider extensions of Condorcet’s Jury 

Theorem to situations where the signals are not 

binary. 

• n people need to take a decision between k 

alternatives denoted 1,…,k.

• One of the k alternatives is correct. 

• We can make various assumptions on the type of 

signals individuals receive. 

• Such as …



Extending Condorect’s Jury Theorem

• We can make various assumptions on the type of 

signals individuals receive. 

• The most general assumption is: 

• A signal space X and distributions P1,…,Pk on X 

• where if state of the word = i, signal ~ Pi

• A nice non-general assumption is: 

• Signal=  correct alternative with probability p > 1/k and 

each other answer with probability (1-p)/(k-1). 

• We will discuss the least general case in class and 

leave the most general case as HW 



Extending Condorect’s Jury Theorem

• Consider the setup where each signal equals the 

correct state of the world with probability p>1/k and 

each of the other states with probability q=(1-p)/(k-1). 

• What should the aggregation function be? 



Extending Condorect’s Jury Theorem

• What should be the aggregation function? 

• Write na(x) :=  # of a’s in the vector x, 

• Def: A Pluraliry function f : [k]n  [k] is defined in the 

following way: f(x) = a if na(x) > nb(x) for all b  a.

• Def: A function f : [k]n  [k]  is fair if for all  2 Sk it 

holds that f( x) := f( x1, …,  xn) =  f(x). 

•Note: fairness corresponds to treating all alternatives 

equally – their names do not matter. 

•Claim (HW): For all k,n there exists a fair Plurality 

function. 



Extending Condorect’s Jury Theorem

• Consider the setup where each signal equals the 

correct state of the world with probability p>1/k and 

each of the other states with probability q=(1-p)/(k-1).

Assume further a uniform prior. 

• Thm: Assume p>1/k. Write c(n) = P[Plurality is correct] 

then: 
• As n  1   c(n)  1. 

• The same is true even for p(n) – 1/k >> n-1/2.

• If p(n)-1/k = o(-1/2) then c(n)  1/k. 

• Writing a(n) = p(n)-q(n) we have for all n that 
• c(n) ¸ 1 – 2 k exp(-a2n(n))

•Pf: ???



Extending Condorect’s Jury Theorem

• Thm: Assume p>1/k. Write c(n) = P[Plurality is correct] 

then: 
•As n  1   c(n)  1. 

• The same is true even for p(n) – 1/k >> n-1/2.

• If p(n)-1/k = o(-1/2) then c(n)  1/k. 

• Writing a(n) = p(n)-q(n) we have for all n that 
• c(n) ¸ 1 – 2 k exp(-a2n)

•Pf: Generalize proofs of the binary case. 



The estimation point of view

• Claim: Plurality maximizes the probability of being 

correct among fair functions. 

•



The estimation point of view

• Claim: Plurality maximizes the probability of being 

correct among fair functions. 

• Pf:

• Same as proof for majority. 

•

• In a way this is a classical estimation problem. 

• There is a random variable S with uniform prior. 

• Our goal is to estimate S given the signals X1,…Xn. 

• We choose the S which maximizes P[S | X1,…Xn]. 

• Since the prior is uniform this is the same as finding 

the S maximizing P[ X1,…Xn | S]



The estimation point of view

• The estimation point of view is valid also for the 

general signals picture: 

• optimal choice function chooses the s maximizing 

• P[S = s | X1,…,Xn]

• Need to think carefully how to measure bias to obtain 

guarantees. 

• Can apply general results from statistics to obtain 

similar results to the ones above. 



More general signals – Example 1

• Two alternatives: +,-: 

• Vote for correct alternative with probability p 

• Vote for wrong alternative with probability q < p

• Do not vote with probability 1-p-q

• Q: Assuming prior correctness (1/2,1/2) what is the 

optimal aggregation function? 



More general signals – Example 2

• Two alternatives: +,-: 

• Vote for correct alternative with probability p 

• Vote for wrong alternative with probability q

• Do not vote with probability 1-p-q

• Q: Assuming prior (1/2,1/2) what is the optimal 

aggregation function? 

• Q: How large should p-q be to aggregate well?

• HW

• For the second question p-q >> n-1/2 always suffice thought 

in some cases less suffices (e.g. q=0, p = log n/n) 



Example 2 of more general signals

• There are k possible alternatives.  

• Each voter receives a ranking where: 

• The correct alternative is at location i with prob.pi

• All other alternatives are placed uniformly at random.

• p1> p2 > …  > pk

•

•Q: Assuming a uniform prior what is the optimal aggregation 

function? 

• Q: What is the difference needed 

between the pi to aggregate well?

• A generalization of a voting method invented 

by Borda (1733 – 1799; mathematician, physicist, political 

scientist, and sailor)



Beyond the Plurality Function

• Further questions: 

• What about other aggregation functions? 

• E.G: U.S Electoral college? 

• Other functions? 

• We’ll assume simple signals: correct outcome with 

probability p>1/k  -all other outcome equally likely. 



Beyond Condorcet’s Jury Theorem

• We want to consider again functions that are:

• Fair – names of alternatives do not matter. 

• Monotone – stronger vote in one direction should not 

hurt this direction. 



Fairness 

• Recall: in the binary case we said f is fair if 

• f(-x) = -f(x). 

•

• In the general case the definition is: 
• Def: A function f : [k]n  [k]  is fair if for all  2 Sk it 

holds that f( x) := f( x1, …,  xn) =  f(x). 

• How to define monotone? – stronger vote in one 

direction should not hurt this direction. 



Monotonicity 

• Def: for two vector x,y 2 [k]n and a 2 [k] write: 

• x  ·a y to indicate that: 

•Whenever xi  yi it holds that yi =a .

• “y is more leaning towards a than x”. 

• Def: A function f : [k]n  [k]  is monotone if 
• for all a 2 [k] and all x,y 2 [k]n it holds that:

• x ·a y  ) f(x) ·a f(y) 

• If a wins for vote x it also wins for vote y. 

• Definition from Kalai-Mossel(????)



An Aggregation Theorem 

• Recall that f : [k]n  [k] is invariant to a transitive 

action G on [n] if 
•for all  2 G it holds that  

• f(x) = f(x)

• Thm (Kalai-Mossel???): 
• 8 k 9 C = C(k) s.t. 

• 8  < 1/3, 8 monotone transitive f : [k]n  [k] where for 

p=1/k it holds that P[f=a] ¸ 1/(2k) for all a it holds that:

• for p > 1/k + C (log(1-) - log(1/2k)) log log n/ log n:
• P[f is correct] ¸ 1-.

•

• Proof similar to previous proof we haven’t seen …

• Examples? 



An Aggregation Theorem 

• Thm (Kalai-Mossel???): 
• 8 k 9 C = C(k) s.t. 

• 8  < 1/3, 8 monotone transitive f : [k]n  [k] where for 

p=1/k it holds that P[f=a] ¸ 1/(2k) for all a it holds that:

• for p > 1/k + C (log(1-) - log(1/2k)) log log n/ log n:
• P[f is correct] ¸ 1-.

• Examples: 

•“Electoral college” with all states of equal size.

• Plurality

• In fact in all of the examples above a bias of Cn-1/2

suffice.



Aggregation of opinions with additional structure 

• So far we assumed that the different alternatives and 

signals  have no “additional structure”. 

• We now consider two examples of such structures. 

• The first example deals with signals that are real 

numbers. 

• The second example deals with rankings. 



Aggregating real #’s  

• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 
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• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 

• One option is for voters who got a positive signal to vote + 

and voters who got negative signal to vote -. 

• Is this good? 



Aggregating real #’s  

• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 

• One option is for voters who got a positive signal to vote + 

and voters who got negative signal to vote -. 

• Is this good? 

• It is pretty good. For example a >> n-1/2 suffice to get the 

correct answer with probability  1. 



Aggregating real #’s  

• Is this good? 

• It is pretty good. For example a >> n-1/2 suffice to get the 

correct answer with probability  1. 

• But it is not optimal.  

• The optimal rule is: each voter declare their signal Xi. 

• Winner is the sign of  Xi

• This is the best Bayesian decision rule (assuming (½, ½) 

prior).

• But note: this rule let’s one cheater determine the 

outcome of election (while majority is more robust).



Aggregating Real #’s

• More generally:  

•Thm (Keller, Mossel, Sen 10): 

• If f is a monotone transitive function f : Rn
 {-,+} 

with Ea=0[f] = 0 then Ea[f]  1 if a >> log n-1/2

• So any democratic function would work. 

• Non democratic functions (e.g. dictator, functions of 

a few voters) will not aggregate even for a constant a.



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k 

alternatives. 

• Q: Should we use a plurality vote?  



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k alternatives. 

•

• Q: Should we use a plurality vote?  

• A1: May not be a good idea: 

• Consider a distribution P where the true permutation 

is at least twice as likely as any other permutation. 

• If we apply plurality rule we may need many (order 

k!) voters to get a good answer. 

• If k is large – this is too big! 



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k alternatives. 

• A2: Suppose 99%  of voters rank some alternative at 

the top. It is a “no brainer” that this alternative 

should be at the top.  However plurality may very well 

not do it. 

• We are using the wrong model! 

• A better model coming next …



Consensus Ranking, Rearrangements and the Mallows Model

• Given a set of rankings {1, 2, ... N} a natural output to consider is  

consensus ranking which is the following “average”: 

for d = distance on the set of permutations of n objects

Most natural is dK which is the Kendall distance.

• Kendall – tau rank statistics uses the Kendall rank to test if 

two variables are statistically independent. 

• Kendall (1907-1988) was  an English statistician. 

• One of the first to argue shares perform a “random walk”



The Mallows Model – A distribution on rearrangements

 Mallow’s voting model: 

 The Mallow’s model is an Exponential family model in : 

 P(  | 0) = Z()-1 exp(- dK(,0))

 If >0 then given rankings 1,..,k, the consensus ranking 
output is the ML estimator of the original ranking 
assuming a uniform prior. 

 This model was suggested by 

Collin Mallows in 

“Non-null ranking models” I, (1957). 





Natural Questions Regarding the Model

• How many voters are needed in order to be able to recover the 

true ranking with good probability? 

• Algorithmically: how can one find the average of these 

permutations?  

• Assume  is some fixed constant. 



Related work

• Cohen,Schapire,Singer 99: Greedy algorithm (CSS)

• Meila,Phadnis,Patterson,Bilmes 07: 

Branch and Bound algorithm – exponential running 

time. 

• J. Bartholdi, III, C. A. Tovey, and M. A. Trick 98: 

Proved NP-hardness 

“Voting Scheme for which it can be difficult to tell who 

won the election”

• Ailon,Newman,Charikar 05 Randomized algorithm 

– guaranteed 11/7 factor approximation (ANC)

• Mathieu, 07: (1+) approximation, time O(n6/+2^2O(1/))



Efficient Sorting of Mallow’s model of 
rearrangements (problem 3)

• [Braverman-Mossel-10]:

• Given r independent samples from the Mallows 
Model, find ML solution exactly! in time nb,where 

• b = 1 + O(( r)-1),

• where r is the number of samples 

• with high probability (say ¸ 1-n-100)



Sorting the Mallow’s Model (Problem 2)

• [Braverman-M-10]: Optimal order can be found in polynomial 
time and O(n log n) queries.

• Proof Ingredient 1: “statistical properties” of generated 
permutations i in terms of the original order 0

• Let  rank elements according to their average location on 
the r generate permutations then: 

• With high probability: x |0(x) - (x)| = O(n /  r), 

max |0(x) - (x)| = O(log n / r)

•Additional ingredient: A dynamic programming 
algorithm to find  given a starting point where each 
elements is at most k away with running time O(n 26k)

• The proof is hard – we’ll describe the 
algorithmic ingredient in more detail

• Following slides courtesy of M. 
Braverman



• The problem now: Find the optimal ordering k+1 such 
that each element is at most d = O (log n) away from its 
position in ’.

• Use dynamic programming:

’                                                                  

The algorithm assuming small deviation

k+1

d

optimally sorted

• For each interval                     there are <24d “variations”.

• A total of poly(n) variations, can store all of them. 



• Store optimal permutations of all variations 

on the following intervals:

• A total of  Õ(24d n) storage. 

• Work from shorter intervals to longer. 

The algorithm assuming small deviation

k+1 n=2log n

n/2 n/2

1 1 1 1 1 1 1 11 1

2 2 22



’                    2k

d

2k-1

• Each of the shorter intervals has been pre-sorted.

• Thus the cost of doing all intervals on level k is

#intervals × #checks × #cost/check = (n/2k) 24d × 22d × 22k.

• Thus, total running time is bounded by O(26d n2).

Building up:

k+1 22d possibilities



Some Notes on Related Problems

• Except for it’s social context the problem above is an example of 

• Sorting from noisy information. 

• Here are a couple more examples of the same form. 
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Example Consensus Ranking, Rearrangements and the Mallows Model

 Problem 1: Consider a sorting problem where for each query 

comparing two elements x and y: 

 Return correct answer with probability ½+ 

 Independently for each query. 

 Can query each pair as many times as we want. 

 How many queries are needed to find correct order with probability 

0.9999?

 Feige, Raghavan, Peled and Upfal.

 Problem 2: Consider a sorting problem where for each query 

comparing two elements x and y. 

 Return correct answer with probability ½+ 

 Independently for each query.

 For each element can query only once. 

 What can we do? 

 Again ML solution found in Braverman-Mossel-09. 



HW due in 3 weeks 

• Q1: The Plurality function:

Prove that for all k,n there exists a fair Plurality function. 

• Prove that if voters receive independent signals with the correct 

alternative with probability p>1/k and all other alternatives with 

equal probability, then Plurality maximizes the probability of 

correct vote among all functions (assuming a uniform prior). 

• Assume p(n) depends on n and write q(n) for the probability of 

receiving incorrect signal and  a(n) = p(n)-q(n). 

• Show have for all n that 
• c(n) := P[Plurality is correct] ¸ 1 – 2 k exp(-a2(n) n)

• (k = # alternatives).



HW due in 3 weeks 

•

• Q2 – Bonus : The weakest aggregation functions.

• Consider independent signals N(a s, 1). 

• Find a transitive monotone function with Ea=0[f] = 0         

• where Ea[f]  0 for all a(n) << (log n)-1/2

• Consider binary signals which are correct with 

probability 1/2 + a(n). 

•Find a fair transitive monotone function that does not 

aggregate well for all a << (log n)-1


