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Extending Condorect’s Jury Theorem

 We want to consider extensions of Condorcet’s Jury
Theorem to situations where the signals are not
binary.

* n people need to take a decision between k
alternatives denoted 1,...,k.

* One of the k alternatives is correct.

« We can make various assumptions on the type of
signals individuals receive.

 Such as ...



Extending Condorect’s Jury Theorem

« We can make various assumptions on the type of
signals individuals receive.

« The most general assumption is:
* A signal space X and distributions P,,...,P, on X
» where if state of the word = |, signal ~ P,

* A nice non-general assumption is:
« Sighal= correct alternative with probability p > 1/k and
each other answer with probability (1-p)/(k-1).

« We will discuss the least general case in class and
leave the most general case as HW ©



Extending Condorect’s Jury Theorem

« Consider the setup where each signal equals the
correct state of the world with probability p>1/k and
each of the other states with probability g=(1-p)/(k-1).

« What should the aggregation function be?



Extending Condorect’s Jury Theorem

« What should be the aggregation function?

* Write n_(x) := # of a’'s in the vector X,
 Def: A Pluraliry function f : [K]™ = [k] is defined in the
following way: f(x) = a if n (x) > n,(x) for all b = a.

* Def: Afunction f: [K]" = [K] is fairif forall c € S, it
holds that f(c x) :=f(c X4, ..., o X)) = o f(X).

*Note: fairness corresponds to treating all alternatives
equally — their names do not matter.

Claim (HW): For all k,n there exists a fair Plurality
function.




Extending Condorect’s Jury Theorem

« Consider the setup where each signal equals the
correct state of the world with probability p>1/k and
each of the other states with probability g=(1-p)/(k-1).
Assume further a uniform prior.

« Thm: Assume p>1/k. Write c(n) = P[Plurality is correct]
then:

*Asn-> o0 c¢(n)-> 1.

* The same is true even for p(n) — 1/k >> n'1/2,

* If p(n)-1/k = o(-¥2) then c(n) = 1/k.

« Writing a(n) = p(n)-g(n) we have for all n that

«c(n) > 1 -2k exp(-atn(n))

Pf: ?7?7?



Extending Condorect’s Jury Theorem

« Thm: Assume p>1/k. Write c(n) = P[Plurality is correct]
then:

‘Asn-2> oo c(n) =2 1.

« The same is true even for p(n) — 1/k >> n'2,

* If p(n)-1/k = o(-¥2) then c(n) = 1/k.

« Writing a(n) = p(n)-g(n) we have for all n that

*c(n) > 1 -2k exp(-a2n)

Pf: Generalize proofs of the binary case.



The estimation point of view

 Claim: Plurality maximizes the probability of being
correct among fair functions.




The estimation point of view

 Claim: Plurality maximizes the probability of being
correct among fair functions.

 Pf:

« Same as proof for majority.

* In a way this is a classical estimation problem.

* There is a random variable S with uniform prior.

» Our goal is to estimate S given the signals X,,...X..

* We choose the S which maximizes P[S | X;,...X.].

* Since the prior is uniform this is the same as finding
the S maximizing P[ X,,...X, | S]



The estimation point of view

* The estimation point of view is valid also for the
general signals picture:

« optimal choice function chooses the s maximizing
*P[S=s| X,...,.X/]

* Need to think carefully how to measure bias to obtain
guarantees.

« Can apply general results from statistics to obtain
similar results to the ones above.



More general signals - Example 1

« Two alternatives: +,-:

« Vote for correct alternative with probability p

* Vote for wrong alternative with probability g < p
* Do not vote with probability 1-p-g

* Q: Assuming prior correctness (1/2,1/2) what is the
optimal aggregation function?



More general signals - Example 2

« Two alternatives: +,-:

« Vote for correct alternative with probability p
* Vote for wrong alternative with probabillity g
* Do not vote with probability 1-p-g

* Q: Assuming prior (1/2,1/2) what is the optimal
aggregation function?
* Q: How large should p-g be to aggregate well?

« HW
 For the second question p-g >> n"12 always suffice thought
In some cases less suffices (e.g. g=0, p = log n/n)



Example 2 of more general signals

* There are k possible alternatives.

« Each voter receives a ranking where:

* The correct alternative is at location i with prob.p;

« All other alternatives are placed uniformly at random.

*P1” P2~ ..o > Px

*Q: Assuming a uniform prior what is the optimal F
function?

* Q. What is the difference needed

between the p, to aggregate well?

* A generalization of a voting method invented e E
by Borda (1733 — 1799; mathematician, physicist, polltlcal

scientist, and sailor)




Beyond the Plurality Function
 Further questions:
 What about other aggregation functions?

« E.G: U.S Electoral college?
* Other functions?

« We’ll assume simple sighals: correct outcome with
probability p>1/k -all other outcome equally likely.



Beyond Condorcet’s Jury Theorem

 We want to consider again functions that are:
 Fair - names of alternatives do not matter.

* Monotone - stronger vote in one direction should not
hurt this direction.



Fairness

« Recall: in the binary case we said f is fair if
* f(-x) = -f(x).

* In the general case the definition is:
* Def: Afunction f: [K]" = [K] is fair if for all c € S it
holds that f(c X) :=f(c X4, ..., o X)) = o f(X).

* How to define monotone? - stronger vote in one
direction should not hurt this direction.



Monotonicity

 Def: for two vector x,y € [k]" and a € [k] write:
* X <,y toindicate that:

*Whenever x; = y; it holds that y, =a .
 “y is more leaning towards a than x”.

« Def. Afunction f : [k]" = [K] IS monotone if
e for all a € [K] and all x,y € [k]" it holds that:

X <, ¥ = f(x) < f(y)

« If a wins for vote x it also wins for vote .

* Definition from Kalai-Mossel(?7?7?)



An Aggregation Theorem

« Recall that f : [k]" = [k] is invariant to a transitive
action G on [n] if

for all o € G it holds that

* f(x,) = f(x)

« Thm (Kalai-Mossel???):

*V k3 C=C(k) s.t.

* Ve < 1/3, YV monotone transitive f : [k]" = [K] where for
p=1/k it holds that P[f=a] > 1/(2k) for all a it holds that:
« forp > 1/k + C (log(1-¢) - log(1/2k)) log log n/ log n:
* P[f is correct] > 1-&.

 Proof similar to previous proof we haven’t seen ...

« Examples?




An Aggregation Theorem

« Thm (Kalai-Mossel?7??):

« YkdC=C(k) s.t.

*V ¢ < 1/3, V. monotone transitive f : [kK]" = [K] where for
p=1/k it holds that P[f=a] > 1/(2k) for all a it holds that:
 for p > 1/k + C (log(1-¢) - log(1/2k)) log log n/ log n:
 P[fis correct] > 1-&.

« Examples:
«“Electoral college” with all states of equal size.
 Plurality

* In fact in all of the examples above a bias of Cn-1/2
suffice.



Aggregation of opinions with additional structure

* So far we assumed that the different alternatives and
signals have no “additional structure”.

* We now consider two examples of such structures.

 The first example deals with signals that are real
numbers.

* The second example deals with rankings.



Aggregating real #’s

* Assume that the true state of the world is s=+ or s=-

« Each voter receives a real signal N(a s, 1) where a> 0 is
some constant.

* how should people vote?



Aggregating real #’s

* Assume that the true state of the world is s=+ or s=-

« Each voter receives a real signal N(a s, 1) where a> 0 is
some constant.

* how should people vote?

* One option is for voters who got a positive signal to vote +
and voters who got negative signal to vote -.

* |s this good?



Aggregating real #’s

* Assume that the true state of the world is s=+ or s=-

« Each voter receives a real signal N(a s, 1) where a> 0 is
some constant.

* how should people vote?

* One option is for voters who got a positive signal to vote +
and voters who got negative signal to vote -.

* |s this good?

* It is pretty good. For example a >> n"'/2 suffice to get the
correct answer with probability - 1.



Aggregating real #’s

* |s this good?

* It is pretty good. For example a >> n"'/2 suffice to get the
correct answer with probability - 1.

 But it is not optimal.

* The optimal rule is: each voter declare their signal X..

* Winner is the sign of > X,

* This is the best Bayesian decision rule (assuming (%2, V2)
prior).

« But note: this rule let’s one cheater determine the
outcome of election (while majority is more robust).



Aggregating Real #’s

* More generally:

*Thm (Keller, Mossel, Sen 10):

* |If f is @ monotone transitive function f : R" 2 {-,+}
with E__,[f] = O then E,[f] > 1 if a >> log n"1/2

« S0 any democratic function would work.
* Non democratic functions (e.g. dictator, functions of
a few voters) will not aggregate even for a constant a.




Aggregating Permutations

 Next we discuss n voters who rank k alternatives.

*The outcome should be a ranking of the k
alternatives.

* Q: Should we use a plurality vote?



Aggregating Permutations

 Next we discuss n voters who rank k alternatives.

*The outcome should be a ranking of the k alternatives.

* Q: Should we use a plurality vote?

* A1: May not be a good idea:

 Consider a distribution P where the true permutation
is at least twice as likely as any other permutation.

* If we apply plurality rule we may need many (order
k!) voters to get a good answer.

* If k is large - this is too big!



Aggregating Permutations

* Next we discuss n voters who rank k alternatives.
*The outcome should be a ranking of the k alternatives.

« A2: Suppose 99% of voters rank some alternative at
the top. It is a “no brainer” that this alternative
should be at the top. However plurality may very well
not do it.

* We are using the wrong model!
* A better model coming next ...



Consensus Ranking, Rearrangements and the Mallows Model

* Given a set of rankings {r,, ©,, ... m\} a natural output to consider is
consensus ranking which is the following “average”:

N

argmin Y d(m;, mp)
1=1

o

for d = distance on the set of permutations of n objects
Most natural is = which is the Kendall distance.

dK(T(',id) —_ le<ﬂ'
1< 17
di(m,7') = d(r(z)7hid) = 37 1
t=<_1]

« Kendall — tau rank statistics uses the Kendall rank to test if
two variables are statistically independent.

« Kendall (1907-1988) was an English statistician.

* One of the first to argue shares perform a “random walk”



The Mallows Model - A distribution on rearrangements

Mallow’s voting model:

The Mallow’s model is an Exponential family model in f3:

P(m | ) = Z(B)™ exp(- dk(m,m))

If >0 then given rankings =«,,..,m,, the consensus ranking
output is the ML estimator of the original ranking
assuming a uniform prior.

This model was suggested by
Collin Mallows in
“Non-null ranking models” |, (1957).




Natural Questions Regarding the Model

« How many voters are needed in order to be able to recover the
true ranking with good probability?

* Algoritnmically: how can one find the average of these
permutations?

« Assume [ is some fixed constant.



Related work

Cohen,Schapire,Singer 99: Greedy algorithm (CSS)
Meila,Phadnis,Patterson,Bilmes 07:

Branch and Bound algorithm — exponential running
time.

J. Bartholdi, Ill, C. A. Tovey, and M. A. Trick 98:
Proved NP-hardness

“Voting Scheme for which it can be difficult to tell who
won the election”

Ailon,Newman,Charikar 05 Randomized algorithm
— guaranteed 11/7 factor approximation (ANC)

Mathieu, 07: (1+¢) approximation, time O(n8/g*2"20(1/))




Efficient Sorting of Mallow's model of
rearrangements (problem 3)

[Braverman-Mossel-10]:

* Given r independent samples from the Mallows
Model, find ML solution exactly! in time n®,where

* b=1+0((Br)"),

* where r is the number of samples
» with high probability (say > 1-n-190)




Sorting the Mallow's Model (Problem 2)

* [Braverman-M-10]: Optimal order can be found in polynomial
time and O(n log n) queries.

* Proof Ingredient 1. "statistical properties” of generated
permutations r; in ferms of the original order =,

+ Let t rank elements according to their average location on
the r generate permutations then:
- With high probability: >, |no(x) - ©(x)| = O(n/ B r),

max |my(x) - ©(x)| = O(log n /B r)
Additional ingredient: A dynamic programming
algorithm to find n given a starting point where each
elements is at most k away with running time O(n 26k)

* The proof is hard - we'll describe the
algorithmic ingredient in more detail
* Following slides courtesy of M.

Braverman



The algorithm assuming small deviation

 The problem now: Find the optimal ordering =,,, such
that each element Is at most d = O (log n) away flrom Its
position in «’.

 Use dynamic programming:

Mo - DA

» For each interval (ESESESSEEER there are <247 “variations”.

» A total of poly(n) variations, can store all of them.



The algorithm assuming small deviation

» Store optimal permutations of all variations
on the following intervals:

111111111 |]| weesssnnnnnnnnnnns 1111111111

9 ? | wssssssssssssssEssssEsnas 7 9

Mt n=2'°9"

. A total of O(24dn) storage.
» Work from shorter intervals to longer.



Building up:

| 2K

) Tysq

« Each of the shorter intervals has been pre-sorted.
« Thus the cost of doing all intervals on level k Is

#intervals x #checks x #cost/check = (n/2K) 24d x 22d x 22k,
 Thus, total running time is bounded by O(2%4 n?).



Some Notes on Related Problems

» Except for it's social context the problem above is an example of
« Sorting from noisy information.
* Here are a couple more examples of the same form.



Example Consensus Ranking, Rearrangements and the Mallows Model

1. Consider a sorting problem where for each query
comparing two elements x and vy:

Return correct answer with probability 2+ ¢
Independently for each query.
Can query each pair as many times as we want.

How many queries are needed to find correct order with probability
0.99997

Feige, Raghavan, Peled and Upfal.

2. Consider a sorting problem where for each query
comparing two elements x and y.

Return correct answer with probability 2+ ¢
Independently for each query.
For each element can query only once.
What can we do?
Again ML solution found in Braverman-Mossel-09.
39



HW due in 3 weeks
* Q1: The Plurality function:

Prove that for all k,n there exists a fair Plurality function.

 Prove that if voters receive independent signals with the correct
alternative with probability p>1/k and all other alternatives with
equal probability, then Plurality maximizes the probability of
correct vote among all functions (assuming a uniform prior).

« Assume p(n) depends on n and write g(n) for the probability of
receiving incorrect signal and a(n) = p(n)-q(n).

« Show have for all n that

* ¢(n) := P[Plurality is correct] > 1 — 2 k exp(-a%(n) n)

e (k = # alternatives).



HW due in 3 weeks

* Q2 — Bonus : The weakest aggregation functions.

« Consider independent signals N(a s, 1).
 Find a transitive monotone function with E__,[f] = 0
« where E_[f] = O for all a(n) << (log n)1/2

« Consider binary signals which are correct with
probability 1/2 + a(n).

*Find a fair transitive monotone function that does not
aggregate well for all a << (log n)-*



