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Admin tasks of the day

* Scribe notes

 To get a grade you must do one.
*Today?

Last week?

* Previous notes?



Today topics

* Topic 1:
« Randomized consensus protocols
* The “voter model” and generalizations.

* Topic 2:
* Which voters to “buy” in the voter model.
* The viral marketing problem.

* Next week/month: a new topic - unbiased signals and social
choice.



Randomized Consensus protocols

» As before we will consider a social network which is a graph.
* G=(V,E)

*We will work in continuous time and asynchronous fashion.
At time O people hold opinions X,(v), v € V.

* In vertex models:

« Update times of each vertex is a Poisson(1) process.

* Equivalent to: after each update — waiting Exp(1) time.

At update time: update X(v) according to neighbors, current
opinion and randomness

« Edge models similar:
« Edges (u,v) have update times — both end points of edge
update X, (t) and X, (t)



Randomized Consensus protocols

* Vertex models:
Individual decisions.

« Edge models:
Decisions are result of interactions with models.

 Natural to consider also cligue models.

« “Goal”: find “good models” that converge to consensus.
What are good models?



Good consensus models

« “Goal”: find “good models” that converge to consensus.
* Property 1: Fairness with respect to alternatives.
* Property 2: Consensus is a fixed point.

* Property 3: Simple.

« Many of the following slides due to G. Schoenebeck



Big Question/General Goals

Courtesy of
G. Schoenebeck



Series of Experimental Work

e Latane L'Herrou[96]
— Try to play majority
e Kearns, Judd, Tan, Wortmann [09]

— Consensus with different payoffs
e Kearns, Suri, Montefort [06]

— coloring
— Enemark, McCubbins, Paturi [09]

Courtesy of
G. Schoenebeck
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Problems Studied

Coordination : Arrive at consensus

Majority Coordination:

Arrive at consensus which equals majority of

original opinions.

Protocols have to be symmetric with respect to

the two states.

Courtesy of
G. Schoenebeck



Definitions: Broadcast and Collision
time

* Broadcast Time: Time for a message to flood
network.

— More like Expansion than Diameter

* Collision Time: Time until for every pair of
people, someone has received both of their
messages.
— Provides trivial lower bound

Courtesy of
G. Schoenebeck



Related Work

* Similar to Distributed Computing

— Usually a different time metric
* Synchronous
* Worst case

— Usually different symmetry condition
* Coordination Games in Economics

* Similar to Simulations in Social Networking
literature.

* More to come in context

Courtesy of
G. Schoenebeck



Coordination using the Voter Model

Voter Model is an edge model where:

If X, (t-) = X, (t-) then: X, (t) = X, (t) = X, (t-)
If X, (t-) = X, (t- ) then:

— Prob %: X, (t) = X, (t- );tX (t) = X,(t-)

— Prob 7: X, (t) = X, (t) = X, (t-)

— Prob J: X, (t) = X, () = X,(t-).

If Xv(t') = u(t ) then: Xv(t) Xu(t) = Xv(t') = Xu(t')
P. Cliford and A. Sudury. A model for spatial conflict
(1973) + Liggett

A. Holley and T. M. Liggett. Ergodic theorems

for weakly interacting infinite systems and the voter

Model (1975)

Xu(t')
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Convergence of the voter model

Claim: The voter model converges to consensus.

Moreover, the convergence time is O(|V|?).
Pf: ?7?

Courtesy of
G. Schoenebeck



Convergence of the voter model

Claim: The voter model converges to consensus.
Moreover, the convergence time is O(|V|?).
Pf of Convergence:

Each of the consensus configurations is a fixed

point. It is also clearly reachable from any other
configurations.

Pf idea of Convergence:

Let opinions be +,-. Then X(t) = 2 X,(t) is a
martingale.




Convergence of the voter model

Convergence in terms of expansion:

Let r = smallest cut in the graph. Then for any
starting configuration will converge to consensus
by time n?/r with probability at least %.

Pf: X(t) is a martingale. Let P(t) = P(Cons. by t).
f(t) = Var[X(t)] satisfies:

f'(t) = lim E[(X(t+h)-X(t))?]/h

f’(t) > r P(No consensus at time t)

If P(4 n?/r) <% then

n?>f(4n?/r)> % r4n?/r—contradiction.




Coordination by choosing a leader
Each player chooses at random how strong
S(v) her opinion is in the range [n'°].

X, (0+) = X, (0) x S(v).
In edge update: weak copies strong.
In case of tie — voter like dynamics.



Greatest Element Dynamics

3
(Red, 55)

Courtesy of
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Coordination by choosing a leader

* Each player chooses at random how strong S(v)
her opinion is in the range [n1Y].

* X,(0+) = X,(0) x S(v).

* |In edge update: weak copies strong.

* In case of tie — voter like dynamics.

* Analysis: in case of single leader — broadcast
time.

* |n the case of more than one — like voter model.
* Expected time := broadcast time.



Coordination Summary

L

Voter Model 1 none

Greatest O(log(n)) broadcast O(log(|V]))
Element

Wait-and-See expected O(1) O(broadcast) O©(broadcast: |E|)

Courtesy of
G. Schoenebeck



The Majority Coordination problem

* Claim: Cannot be done with no memory.
* Pf: 7?7



The Majority Coordination problem

* Claim: Cannot be done with no memory.

* Pf: Look at a configuration resulting in a
change.

 Make it change majority.



The Majority Coordination problem

* Claim: Can be done with 2 bits of memory.
* Pf: 7?7



Strong Weak Voter

 All Voters have opinion (red/blue) and strength
of opinion (STRONG/weak). Originally all strong.

* When they meet,

— Update color:
e STRONG influence weak
 Otherwise voter model

— Update Strengths:
* Two STRONGS of different colors cancel to weak
e Otherwise stay the same
 STRONG/weak swap strengths

Courtesy of
G. Schoenebeck



Majority Coordination

[LBI5] impossible

[BTV09] 2 < oo none
Strong-Weak 2 O(n3) none
[KTO8] O(log(n)) O(n’) V]

Wait-and-See expected O(log(A)) O(d + log(n)) - log(n)  O(broadcast: |E|)

Courtesy of
G. Schoenebeck



Next topic: which voters to buy

* Q: Consider the voter model on a graph.

« Suppose you can change the opinions of r people from - to +.
* Which opinions should you change?

« Want to maximize the probability that convergence to all +.



Which voters to buy - a different model

* Q: Consider the voter model on a graph.
« Suppose you can change the opinions of r people from - to +.
* Which opinions should you change?

« Want to maximize the probability that convergence to all +.

* A: It doesn’t matter since it is the same Random walk.

 Consider a synchronous model where
« X,(t+1) = +/- with probabilities # {w € N(v) : X, (t) = +/-}

* Who should we choose here?
 Difference between vertex model and edge model.
 Question asked by: Even Dar and Shapira



Which voters to buy - a different model

 Consider a synchronous model where

« X,(t+1) = +/- with probabilities # {w € N(v) : X, (t) = +/-}

« Want to change X_v(0) for s nodes to maximize probability of
final vote to be +. Who should we choose?

* Who should we choose here?
 Difference between vertex model and edge model.



Which voters to buy - a different model

 Consider a synchronous model where

« X,(t+1) = +/- with probabilities # {w € N(v) : X, (t) = +/-}

« Want to change X_v(0) for s nodes to maximize probability of
final vote to be +. Who should we choose?

* Who should we choose here?
 Claim: we should choose the highest degree nodes that are-.
 Claim: 2, d, X,(t) is a martingale.

 This problem leads us naturally to other problems involving
changing people opinions. Next we discuss the “Viral Marketing
Problem”



Which voters to buy - a different model

 Consider a synchronous model where

« X,(t+1) = +/- with probabilities # {w € N(v) : X, (t) = +/-}

« Want to change X_v(0) for s nodes to maximize probability of
final vote to be +. Who should we choose?

* Who should we choose here?
 Claim: we should choose the highest degree nodes that are-.
 Claim: 2, d, X,(t) is a martingale.

 This problem leads us naturally to other problems involving
changing people opinions. Next we discuss the “Viral Marketing
Problem”

* Most of the next slides are due to Sebastien Roch from a joint
paper on viral marketing.



Some Network Optimization Problems

 Problem:
- Optimization over stochastic models defined on networks.

« Examples:
- Which Genes to knock out in order to kill a cancer cell?
- Which computers to immune in order make a networks robust?
- Which computers to attack in order to fail the network?
- Which individuals to immune to stop a disease from spreading.

- Viral Marketing: Which individuals to expose to a product so
as to maximize its distribution?




models of collective behavior

« examples:
- joining a riot
- adopting a product
- going to a movie

 model features:
- binary decision
- cascade effect
- network structure

Courtesy of
S. Roch



viral marketing

« referrals, word-of-mouth can be very effective
- eX.: Hotmail
e viral marketing
- goal: mining the network value of potential customers
- how: target a small set of trendsetters, seeds
o example [Domingos-Richardson’02]
- collaborative filtering system
- use MRF to compute “influence” of each customer

Courtesy of
S. Roch



independent cascade model

 when a node is activated
- it gets one chance to activate each neighbour
- probability of success from utovisp,,

Courtesy of
S. Roch



Independent Cascades Model

graph G=(V,E); initial activated set S, S; or Sy U Sy, Sp N S,

a,b and c¢,d the expected size of the marketed set given starting at
the 4 sets then:

Claim: c+d < a+b

Pf. 722



Independent Cascades Model

graph G=(V,E); initial activated set S, S; or Sy U Sy, Sp N S,

a,b and c the expected size of the marketed set given starting at the
three sets then:

Claim: c +d < a+b

Pf: Use the same randomness to decide which edges copy and which
not.

Let G’ be the (random) induced graph.

Then a = E[vertices connected to S, in G]
And b = E[vertices connected to S, in G]
And c = E[vertices connected to S, U S, in G]
And d = E[vertices connected to S, U S; in G]

This means that the expected size of the infected set is a submodular
functions of the set.



generalized models
« graph G=(V,E); initial activated set S,

« generalized threshold model [Kempe-Kleinberg-Tardos’03,’05]
- activation functions: f (S) where S is set of activated nodes
- threshold value: 6, uniform in [O,1]
- dynamics: at time t,set S; to S, ; and add all nodes with f (S, ;) > 6,
(note the process stops after (at most) n-1 steps)

« generalized cascade model [KKT’03,’05]

- when node u is activated:
» gets one chance to activate each of the neighbours

« probability of success from u to v: p,(v,S) where S is set of nodes who have
already tried (and failed) to activate u

- assumption: the p,(v,.)’s are “order-independent”

. [KKT’03] - the two models are equivalent

Courtesy of
S. Roch



influence maximization

. - the influence o(S) given the initial seed S is the
expected size of the infected set at termination

o(S) =E4[S,.[]

- in the influence maximization problem (IMP), we want
to find the seed S of fixed size k that maximizes the influence

S| =k}

S* = argmax{a(S) ScV,

. [KKT’03] - the IMP is NP-hard

- reduction from Set Cover: ground set U = {u,,...,u,} and collection of cover
subsets S,...,S,,

u @ ® S
independent 32 : (ui,Sj) € E/ : gé
cascade S~ & . 4S, S‘=k, o(S)=zn+k?
model ' —
u, :/ U; € Sj ™~ : S

Courtesy of
S. Roch



submodularity

- a set function f : V -> R is submodular if for all A, Bin V
S+ f(B)zf(ANB)+ f(AUB)

example: f(S) = g(|S|) where g is concave

interpretation: “discrete concavity” or “diminishing returns”, indeed
submodularity equivalent to

VScT,vveV, [f(Towp)-fD)=f(Suvi)—[f(S)

threshold models:

- it is natural to assume that the activation functions have diminishing
returns

- supported by observations of [Leskovec-Adamic-Huberman’06] in the
context of viral marketing

Courtesy of

S. Roch



main result

. [M-Roch’06; first conjectured in KKT’03] - in the generalized
threshold model, if all activation functions are monotone and
submodular, then the influence is also submodular

. [M-Roch’06] - IMP admits a (1 - e'! - ¢)-approximation
algorithm (for all € > 0)

- this follows from a general result on the approximation of submodular
functions [Nemhauser-Wolsey-Fisher’78]

e known special cases [KKT’03,’05]:
- linear threshold model, independent cascade model
- decreasing cascade model, “normalized” submodular threshold model

LSO WH 1.5 S LTV W) - (D)
1=1.(5) 1=1.T)

VSQ T) pu(vﬂS) Zpu(vbﬂ Orequiv'

Courtesy of
S. Roch



Easy approximation of sub-modular functions

Let f : 2In] = [0,1] be monotone and submodular.
e Consider finding the set S maximizing f(S) under the constraints
|S|=k.

e Then the greedy algorithm provides a (1-1/e) approximate solution to
this problem.

. [M-Roch’06] - IMP admits a (1 - el - ¢)-approximation
algorithm (for all € > 0)

- this follows from a general result on the approximation of submodular
functions [Nemhauser-Wolsey-Fisher’78]

known special cases [KKT’03,’05]:
- linear threshold model, independent cascade model

- decreasing cascade model, “normalized” submodular threshold model
Courtesy of

S. Roch \v/Sg T, pu(V,S)Zpu(V,T) Orequiv. fu(SU{V})_fu(S) > fu(TU {V})—fu(T)

1=1.(5) 1= 1.T)



Easy approximation of sub-modular functions

Let f : 2"l & [0,1] be monotone and submodular.

Consider finding the set S maximizing f(S) under the constraints
|S| =K.

Then the greedy algorithm provides a (1-1/e-¢) approximate solution
to this problem.

Let S_1,...5_k be the sets chosen by the greedy alg. O = optimal set.
Write x; = f(5;)-f(5;.1)

Then f(0) < f(5; U O) < f(S;) + k X;,4

S0 X;y > (F(0)-f(S))/k.

By induction: f(S;) = f(5;.;) + x;, > f(O) (1 - (1-1/k)")
Taking i=k we obtain the claim



related work

« sociology
- threshold models: [Granovetter’78], [Morris’00]
- cascades: [Watts’02]

e data mining
- viral marketing: [KKT’03,’05], [Domingos-Richardson’02]

- recommendation networks: [Leskovec-Singh-Kleinberg’05], [Leskovec-
Adamic-Huberman’06]

e economics
- game-theoretic point of view: [Ellison’93], [Young’02]

e probability theory
- Markov random fields, Glauber dynamics
- percolation
- interacting particle systems: voter model, contact process

Courtesy of
S. Roch




proof sketch

Courtesy of
S. Roch



coupling

e we use the generalized threshold model

« arbitrary sets A, B; consider 4 processes:
- (A,) started at A
- (B;) started at B
- (C,) started at AnB
- (D,) started at AUB

« it suffices to couple the 4 processes in such a way that for all t

C,cA,nNB,
D c A, VB,
e indeed, at termination
An—l + Bn—l 2 An—l mBn—l + An—l UBn—l 2 Cn—l + Dn—l

(note this works with |.| replaced with any w monotone, submodular)

Courtesy of
S. Roch



proof ideas

our goal:
C.cAnB (1) D cA VB (2
antisense coupling
- obvious way to couple: use same 6 ’s for all 4 processes
- satisfies (1) but not (2)
- “antisense”: using 0, for (A,) and (1-0,) for (B,) “maximizes union”
- we combine both couplings
piecemeal growth
- seed sets can be introduced in stages
- we add AnB then A\B and finally B\A
need-to-know
- not necessary to pick all 0,’s at beginning
- can unveil only what we need to know:

0, € [fv(St—z):fv (St—l)]?

Courtesy of
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piecemeal growth

« process started at S: (S,)
e partition of S: SM), SK)
« consider the process (T.):
- pick 0,’s
- run the process with seed S until termination
- add S@ and continue until termination
- add S©) and so on

e lemma - the sets S, ; and T, ; are the same distribution

Courtesy of
S. Roch



antisense coupling

disjoint sets: S, T
partition of S: S, S(K)
piecemeal process with seeds S, . S T: (S,)

consider the process (T.):
- pick 6,’s
- run piecemeal process with seeds S, .. S(K) until termination
- add T and continue with threshold values

0,=1-0,+ f.(Te)

- the sets S.qy,.; and T(y.y),; have the same distribution

Courtesy of

S. Roch



need-to-know

- run the first K stages identically in both processes
- note that for all v notin Sy, ; = Ty, 4, 0, is uniformly distributed in

[fu(Tin-) 1]
- but6,=1-6,+f,(Ty,..) has the same distribution

simulation 1 simulation 2

Courtesy of
S. Roch



Phase AN B

Coupling proof |

Phase A\ B

Phase B \ A

Ag=ANB — A, 1

An=A,_1 U l:A \ B) — Aogp_1

Aoy = Agp 1 UD — Azn_q

Bo=ANB — Bn_1

Bn =Bn_1 U0 — Bon_1

Bop = Ban—1U(B\ A) — B3n—1




Phase AN B

Coupling proof li

Phase A\ B

Phase B \ A

Co=ANB—D,_1

Crn=Crh1UD— Copn_

Con = Con—1UD — C3p—1
Aszn_1N B3n_1

D0=AHB—’Dn—1

Dﬂ, = Dn—]_ J (A \ B) — DQn—]_

Dap = Dapn—1 U(B\ A) = D3n—1
A3zn—1U Bsn_1




Coupling proof Il

new processes have correct final distribution

up to time 2n-1, B, = C, and A, = D; so that
CtgA[th DtgA[UBt
for time 2n, note that

B,,_,cD,,,
an = an—l U(T\S) DZn = D2n—1 U(T\S)

so by monotonicity and submodularity
fv (an) o fv (an—1) 2 fv(Dzn) o fv(Dzn—l)

then proceed by induction preserving
Dt \ D2n—1 - Bt \ BZn—l fv(Dt) _fv(DZn—l) < fv(Bt) _fv(BZn—l)

At time t=3n-1, obtain D,,, <D, ,UB, A, ,UB;



general result

e we have proved:

[Mossel-R’06] - in the generalized threshold model, if all
activation functions are submodular, then for any monotone, submodular
function w, the generalized influence

0, (S)=Eg[w(S, )]

is submodular
e Note: A closure property for sub-modular functions!



Future Research Directions

» Study optimization problems for other stochastic models defined on
networks.



