
Social Choice and Social Networks

Consensus, Bribe and Marketing

Draft – All right reserved 

Elchanan Mossel

UC Berkeley



Admin tasks of the day

• Scribe notes 

• To get a grade you must do one.

•

•Today? 

•Last week? 

• Previous notes? 



Today topics

• Topic 1: 

• Randomized consensus protocols 

• The “voter model” and generalizations. 

• Topic 2: 

• Which voters to “buy” in the voter model. 

• The viral marketing problem. 

• Next week/month: a new topic - unbiased signals and social 

choice. 



Randomized Consensus protocols

• As before we will consider  a social network which is a graph.

• G=(V,E)  

•We will work in continuous time and asynchronous fashion.
• At time 0 people hold opinions X0(v), v 2 V. 

• In vertex models: 

• Update times of each vertex is a Poisson(1) process. 

• Equivalent to:  after each update – waiting Exp(1) time. 

• At update time: update Xt(v) according to neighbors, current 

opinion  and randomness

• Edge models similar: 

• Edges (u,v) have update times – both end points of edge 

update Xu(t) and Xv(t)



Randomized Consensus protocols

• Vertex models: 

Individual decisions. 

• Edge models: 

Decisions are result of interactions with models. 

• Natural to consider also clique models. 

• “Goal”: find “good models” that converge to consensus.

What are good models?   



Good consensus models

• “Goal”: find “good models” that converge to consensus.

• Property 1: Fairness with respect to alternatives. 

• Property 2: Consensus is a fixed point. 

• Property 3: Simple. 

• Many of the following slides due to G. Schoenebeck 



Big Question/General Goals

Courtesy of 

G. Schoenebeck



Series of Experimental Work

• Latane L’Herrou*96]

– Try to play majority

• Kearns, Judd, Tan, Wortmann [09]

– Consensus with different payoffs

• Kearns, Suri, Montefort [06]

– coloring

– Enemark, McCubbins, Paturi [09]

Courtesy of 

G. Schoenebeck



Our Model

State State

State

State

State

T =  T’(SCasey, SGrant, R, Advice) X 
T’(SGrant, SCasey, R, Advice) 

Courtesy of 

G. Schoenebeck



Problems Studied

• Coordination : Arrive at consensus 

• Majority Coordination: 

• Arrive at consensus which equals majority of 
original opinions.

• Protocols have to be symmetric with respect to 
the two states. 

Courtesy of 

G. Schoenebeck



Definitions: Broadcast and Collision 
time

• Broadcast Time:  Time for a message to flood 
network.

– More like Expansion than Diameter

• Collision Time:  Time until for every pair of 
people, someone has received both of their 
messages. 

– Provides trivial lower bound

Courtesy of 

G. Schoenebeck



Related Work

• Similar to Distributed Computing
– Usually a different time metric

• Synchronous

• Worst case

– Usually different symmetry condition

• Coordination Games in Economics

• Similar to Simulations in Social Networking 
literature.

• More to come in context
Courtesy of 

G. Schoenebeck



Coordination using the Voter Model
• Voter Model is an edge model where: 
• If Xv(t-) = Xu(t-) then: Xv(t) = Xu(t) = Xv(t-) = Xu(t-) 
• If Xv(t-)  Xu(t-) then: 

– Prob ½: Xv(t) = Xv(t-)  Xu(t) = Xu(t-) 
– Prob ¼: Xv(t) = Xu(t) = Xu(t-)
– Prob ¼: Xu(t) = Xv(t) = Xv(t-).

• If Xv(t-) = Xu(t-) then: Xv(t) = Xu(t) = Xv(t-) = Xu(t-) 
• P. Cliford and A. Sudury. A model for spatial conflict 

(1973) + Liggett 
• A. Holley and T. M. Liggett. Ergodic theorems
• for weakly interacting infinite systems and the voter
• Model (1975)



Voter Model

State State

State

State

State

State State State State State

Courtesy of 
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Convergence of the voter model
Claim: The voter model converges to consensus. 

Moreover, the convergence time is O(|V|2). 

Pf: ??

Courtesy of 

G. Schoenebeck



Convergence of the voter model
Claim: The voter model converges to consensus. 

Moreover, the convergence time is O(|V|2). 

Pf of Convergence:

Each of the consensus configurations is a fixed 
point. It is also clearly reachable from any other 
configurations. 

Pf idea of Convergence:

Let opinions be +,-. Then X(t) =  Xv(t) is a 
martingale. 



Convergence of the voter model
• Convergence in terms of expansion:

• Let r = smallest cut in the graph. Then for any 
starting configuration will converge to consensus 
by time n2/r with probability at least ½. 

• Pf: X(t) is a martingale. Let P(t) = P(Cons. by t).

• f(t) = Var[X(t)] satisfies: 

• f’(t) = lim E[(X(t+h)-X(t))2]/h 

• f’(t) ¸ r P(No consensus at time t)

• If P(4 n2 / r) · ½ then 

• n2 ¸ f(4 n2/ r) ¸ ½  r 4 n2 / r – contradiction.



Coordination by choosing a leader
• Each player chooses at random how strong 

S(v) her opinion is in the range [n10].

• Xv(0+) = Xv(0) £ S(v).

• In edge update: weak copies strong. 

• In case of tie – voter like dynamics. 



Greatest Element Dynamics

(Blue, 41) (Red, 55)

(Red, 34)

(Blue, 75)

(Blue, 50)

(Red, 55)

(Red, 55)

(Blue, 75)

(Red, 55)

Courtesy of 
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Coordination by choosing a leader
• Each player chooses at random how strong S(v) 

her opinion is in the range [n10].

• Xv(0+) = Xv(0) £ S(v).

• In edge update: weak copies strong. 

• In case of tie – voter like dynamics. 

• Analysis: in case of single leader – broadcast 
time. 

• In the case of more than one – like voter model. 

• Expected time := broadcast time.



Coordination Summary

Problem Memory Time Required Advice

Voter Model 1 n2 none

Greatest 
Element

O(log(n)) broadcast Θ(log(|V|))

Wait-and-See expected O(1) O(broadcast) Θ(broadcast∙ |E|)

Courtesy of 

G. Schoenebeck



The Majority Coordination problem

• Claim: Cannot be done with no memory.

• Pf: ?? 



The Majority Coordination problem

• Claim: Cannot be done with no memory.

• Pf: Look at a configuration resulting in a 
change. 

• Make it change majority.



The Majority Coordination problem

• Claim: Can be done with 2 bits of memory.

• Pf: ??



Strong Weak Voter

• All Voters have opinion (red/blue) and strength
of opinion (STRONG/weak).  Originally all strong.

• When they meet, 
– Update color:

• STRONG influence weak
• Otherwise voter model

– Update Strengths:
• Two STRONGS of different colors cancel to weak
• Otherwise stay the same
• STRONG/weak swap strengths

Courtesy of 

G. Schoenebeck



Majority Coordination

Memory Time Required Advice

[LB95] 1 impossible

[BTV09] 2 < ∞ none

Strong-Weak 2 O(n3) none

[KT08] O(log(n)) O(n7) |V|

Wait-and-See expected O(log(Δ)) O(d + log(n)) ∙ log(n) Θ(broadcast∙ |E|)

Courtesy of 

G. Schoenebeck



Next topic: which voters to buy

• Q: Consider the voter model on a graph. 

• Suppose you can change the opinions of r people from – to +. 

• Which opinions should you change? 

• Want to maximize the probability that convergence to all +. 



Which voters to buy – a different model

• Q: Consider the voter model on a graph. 

• Suppose you can change the opinions of r people from – to +. 

• Which opinions should you change? 

• Want to maximize the probability that convergence to all +. 

• A: It doesn’t matter since it is the same Random walk. 

• Consider a synchronous model where 
• Xv(t+1) = +/- with probabilities # {w 2 N(v) : Xw(t) = +/-}

• Who should we choose here? 

• Difference between vertex model and edge model. 

• Question asked by: Even Dar and Shapira 



Which voters to buy – a different model

• Consider a synchronous model where 
• Xv(t+1) = +/- with probabilities # {w 2 N(v) : Xw(t) = +/-}

• Want to change X_v(0) for s nodes to maximize probability of 

final vote to be +. Who should we choose? 

• Who should we choose here? 

• Difference between vertex model and edge model. 



Which voters to buy – a different model

• Consider a synchronous model where 
• Xv(t+1) = +/- with probabilities # {w 2 N(v) : Xw(t) = +/-}

• Want to change X_v(0) for s nodes to maximize probability of 

final vote to be +. Who should we choose? 

• Who should we choose here? 

• Claim: we should choose the highest degree nodes that are-. 

• Claim: v dv Xv(t) is a martingale.

• This problem leads us naturally to other problems involving 

changing people opinions. Next we discuss the “Viral Marketing 

Problem”



Which voters to buy – a different model

• Consider a synchronous model where 
• Xv(t+1) = +/- with probabilities # {w 2 N(v) : Xw(t) = +/-}

• Want to change X_v(0) for s nodes to maximize probability of 

final vote to be +. Who should we choose? 

• Who should we choose here? 

• Claim: we should choose the highest degree nodes that are-. 

• Claim: v dv Xv(t) is a martingale.

• This problem leads us naturally to other problems involving 

changing people opinions. Next we discuss the “Viral Marketing 

Problem”

• Most of the next slides are due to Sebastien Roch from a joint 

paper on viral marketing.



Some Network Optimization Problems

• Problem:

– Optimization over stochastic models defined on networks.

• Examples:

– Which Genes to knock out in order to kill a cancer cell?

– Which computers to immune in order make a networks robust?

– Which computers to attack in order to fail the network?

– Which individuals to immune to stop a disease from spreading.

– Viral Marketing: Which individuals to expose to a product so 

as to maximize its distribution?



models of collective behavior

• examples:

– joining a riot

– adopting a product

– going to a movie 

• model features:

– binary decision

– cascade effect

– network structure

Courtesy of 

S. Roch



viral marketing

• referrals, word-of-mouth can be very effective

– ex.: Hotmail

• viral marketing 

– goal: mining the network value of potential customers

– how: target a small set of trendsetters, seeds

• example [Domingos-Richardson’02]

– collaborative filtering system

– use MRF to compute “influence” of each customer

Courtesy of 

S. Roch



independent cascade model

• when a node is activated

– it gets one chance to activate each neighbour

– probability of success from u to v is pu,v
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Courtesy of 

S. Roch



Independent Cascades Model

• graph G=(V,E); initial activated set S0, S1 or S0 [ S1, S0 Å S1

• a,b and c,d the expected size of the marketed set given starting at 

the 4 sets then: 

• Claim: c+d · a+b

• Pf: ???



Independent Cascades Model

• graph G=(V,E); initial activated set S0, S1 or S0 [ S1, S0 Å S1

• a,b and c the expected size of the marketed set given starting at the 

three sets then: 

• Claim: c +d · a+b

• Pf: Use the same randomness to decide which edges copy and which 

not. 

• Let G’ be the (random) induced graph. 

• Then a = E[vertices connected to S0 in G]

• And b = E[vertices connected to S1 in G]

• And c = E[vertices connected to S0 [ S1 in G]

• And d = E[vertices connected to S0 [ S1 in G]

• This means that the expected size of the infected set is a submodular 

functions of the set.



generalized models

• graph G=(V,E); initial activated set S0

• generalized threshold model [Kempe-Kleinberg-Tardos’03,’05]

– activation functions: fu(S) where S is set of activated nodes

– threshold value: u uniform in [0,1]

– dynamics: at time t,set St to St-1 and add all nodes with fu(St-1)  u

(note the process stops after (at most) n-1 steps)

• generalized cascade model [KKT’03,’05]

– when node u is activated:

• gets one chance to activate each of the neighbours

• probability of success from u to v: pu(v,S) where S is set of nodes who have 

already tried (and failed) to activate u

– assumption: the pu(v,.)’s are “order-independent”

• theorem [KKT’03] - the two models are equivalent

Courtesy of 

S. Roch



influence maximization

• definition - the influence (S) given the initial seed S is the 

expected size of the infected set at termination

• definition - in the influence maximization problem (IMP), we want 

to find the seed S of fixed size k that maximizes the influence

• theorem [KKT’03] - the IMP is NP-hard

– reduction from Set Cover: ground set U = {u1,…,un} and collection of cover 

subsets S1,…,Sm



(S)  E S Sn1 



S* argmax  (S) : S  V ,  S  k 

independent
cascade
model



S, S  k, (S)  n  k?…

u1
u2
u3

un

…

S1
S2
S3

Sm



(ui,S j ) E



ui  S j
Courtesy of 

S. Roch



submodularity

• definition - a set function f : V -> R is submodular if for all A, B in V

• example: f(S) = g(|S|) where g is concave

• interpretation: “discrete concavity” or “diminishing returns”, indeed 

submodularity equivalent to

• threshold models:

– it is natural to assume that the activation functions have diminishing 

returns

– supported by observations of [Leskovec-Adamic-Huberman’06] in the 

context of viral marketing



f (A) f (B)  f (AB) f (AB)



S T,vV,     f (T{v}) f (T)  f (S{v}) f (S)

Courtesy of 

S. Roch



main result

• theorem [M-Roch’06; first conjectured in KKT’03] - in the generalized 

threshold model, if all activation functions are monotone and 

submodular, then the influence is also submodular

• corollary [M-Roch’06] - IMP admits a (1 - e-1 - )-approximation 

algorithm (for all  > 0)

– this follows from a general result on the approximation of submodular 

functions [Nemhauser-Wolsey-Fisher’78]

• known special cases [KKT’03,’05]:

– linear threshold model, independent cascade model

– decreasing cascade model, “normalized” submodular threshold model



S  T,  pu(v,S)  pu(v,T) or equiv. 
fu(S{v})  fu(S)

1 fu(S)

fu(T{v})  fu(T)

1 fu(T)

Courtesy of 

S. Roch



Easy approximation of sub-modular functions

• Thm: Let f : 2[n]  [0,1] be monotone and submodular.

• Consider finding the set S maximizing f(S) under the constraints 

|S|=k.

• Then the greedy algorithm provides a (1-1/e) approximate solution to 

this problem. 

• corollary [M-Roch’06] - IMP admits a (1 - e-1 - )-approximation 

algorithm (for all  > 0)

– this follows from a general result on the approximation of submodular 

functions [Nemhauser-Wolsey-Fisher’78]

• known special cases [KKT’03,’05]:

– linear threshold model, independent cascade model

– decreasing cascade model, “normalized” submodular threshold model



S  T,  pu(v,S)  pu(v,T) or equiv. 
fu(S{v})  fu(S)

1 fu(S)

fu(T{v})  fu(T)

1 fu(T)

Courtesy of 

S. Roch



Easy approximation of sub-modular functions

• Thm: Let f : 2[n]
 [0,1] be monotone and submodular.

• Consider finding the set S maximizing f(S) under the constraints 

|S|=k.

• Then the greedy algorithm provides a (1-1/e-) approximate solution 

to this problem. 

• Pf:

• Let S_1,…S_k be the sets chosen by the greedy alg. O = optimal set.

• Write xi = f(Si)-f(Si-1)

• Then f(O) · f(Si [ O) · f(Si) + k xi+1

• So xi+1 ¸ (f(O)-f(Si))/k.

• By induction: f(Si) = f(Si-1) + xi ¸ f(O) (1 – (1-1/k)i)

• Taking i=k we obtain the claim



related work

• sociology

– threshold models: [Granovetter’78], [Morris’00]

– cascades: [Watts’02]

• data mining

– viral marketing: [KKT’03,’05], [Domingos-Richardson’02]

– recommendation networks: [Leskovec-Singh-Kleinberg’05], [Leskovec-
Adamic-Huberman’06]

• economics

– game-theoretic point of view: [Ellison’93], [Young’02]

• probability theory

– Markov random fields, Glauber dynamics

– percolation

– interacting particle systems: voter model, contact process

Courtesy of 

S. Roch



proof sketch

Courtesy of 

S. Roch



coupling

• we use the generalized threshold model

• arbitrary sets A, B; consider 4 processes:

– (At) started at A

– (Bt) started at B

– (Ct) started at AB

– (Dt) started at AB

• it suffices to couple the 4 processes in such a way that for all t

• indeed, at termination

(note this works with |.| replaced with any w monotone, submodular)



Ct  At Bt

Dt  At Bt



An1  Bn1  An1Bn1  An1Bn1  Cn1  Dn1

Courtesy of 

S. Roch



proof ideas

• our goal:

• antisense coupling

– obvious way to couple: use same u’s for all 4 processes

– satisfies (1) but not (2)

– “antisense”: using u for (At) and (1-u) for (Bt) “maximizes union”

– we combine both couplings

• piecemeal growth

– seed sets can be introduced in stages

– we add AB then A\B and finally B\A

• need-to-know

– not necessary to pick all u’s at beginning

– can unveil only what we need to know:



Ct  AtBt    (1)          Dt  AtBt    (2)



v  fv St2 , fv St1  ?

Courtesy of 

S. Roch



piecemeal growth

• process started at S: (St)

• partition of S: S(1),…,S(K)

• consider the process (Tt):
– pick u’s

– run the process with seed S(1) until termination

– add S(2) and continue until termination

– add S(3) and so on

• lemma - the sets Sn-1 and TKn-1 are the same distribution

Courtesy of 

S. Roch



antisense coupling

• disjoint sets: S, T

• partition of S: S(1),…,S(K)

• piecemeal process with seeds S(1),…,S(K),T: (St)

• consider the process (Tt):
– pick u’s

– run piecemeal process with seeds S(1),…,S(K) until termination

– add T and continue with threshold values

• lemma - the sets S(K+1)n-1 and T(K+1)n-1 have the same distribution



v '1v  fv TKn1 

Courtesy of 

S. Roch



need-to-know

• proof of lemma

– run the first K stages identically in both processes

– note that for all v not in SKn-1 = TKn-1, v is uniformly distributed in 

[fv(TKn-1),1]

– but v’ = 1 - v + fv(TKn-1) has the same distribution



v  fv St2 , fv St1  ?

simulation 1 simulation 2

Courtesy of 

S. Roch



Coupling proof I

ANTI



Coupling proof II

ANTI



Coupling proof III
• new processes have correct final distribution

• up to time 2n-1, Bt = Ct and At = Dt so that

• for time 2n, note that

• so by monotonicity and submodularity

• then proceed by induction preserving 

• At time t=3n-1, obtain 

tttttt BADBAC            



B2n1  D2n1

B2n  B2n1 (T \ S)          D2n  D2n1 (T \ S)



fv(B2n) fv(B2n1)  fv(D2n) fv(D2n1)

 )(f)(f)(f)(f        \\ 12vv12vv1212   ntntntnt BBDDBBDD

          1313131213   nnnnn BABDD



general result

• we have proved:

theorem [Mossel-R’06] - in the generalized threshold model, if all 

activation functions are submodular, then for any monotone, submodular 

function w, the generalized influence

is submodular

• Note: A closure property for sub-modular functions!


w(S) ES[w(Sn1)]



Future Research Directions

• Study optimization problems for other stochastic models defined on 

networks.


