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The Bayesian View of the Jury Theorem

• Recall: we assume +/- with prior probability 

(0.5,0.5). 

•Each voter receives signal xi which is correct with 

probability p independently. 

• Note that if this is indeed the case, then after the 

vote has been cast, all voters can calculate: 

• P[s = + | x]/ P[s = - | x]. 

• Obtain posterior probability of +,-. 

• Everybody agree about the posterior. 



Critique of The Bayesian View

• The main critique is: 

• In real elections people don’t all converge to the 

same posterior! 

• The common prior assumption is obviously violated

• However, the Bayesian setup may still be useful: 



Usefulness of the Bayesian View

• However, the Bayesian setup is still useful: 

• Since it is has nice theory. 

• It allows to compare different networks, modes of 

communication etc. 

• Allows to test in what way people deviate from 

“rational behavior” 

• Perhaps more applicable to learning: ask people to 

predict outcome of elections

• Perhaps more applicable to computational agents.   



Challenges in The Bayesian View

•In Condorct Jury Theorem – the theory was easy.

• Why?  

•



Challenges in The Bayesian View

•In Condorct Jury Theorem – the theory was easy. 

• In general: the theory is easy if every agent can see 

the information of all other agents at some finite 

time.

• Theory is more interesting if only partial information 

is revealed. Examples: 

• Each player only says how much she believes in 

something and not why. 

•You only see some of the agents and not all.



A few examples of Bayesian Analysis

• In the first family of examples the goal is to evaluate 

the expected value of some function (prob. of some 

event). 

• 2 players – agreeing to disagree (Aumann 1976)

• General directed graph (Parikh Krasucki 90s)

• Guassian signals (P. DeMarzo, D. Vayanos, and J. 

Zwiebel , M+Tamuz)

• In the 2nd family of examples the actions of players 

are very limited (binary) while the signal space is very 

rich (continuous).

• Voting on social networks (Gale Kariv 2003) 

• The complete graph case (M + Tamuz)



Aumann’s example 

• Two agents have a complete common prior. 

• Agent i=1,2 initially receives signal s(i). 

• There is a bounded function f from the space to R say. 

• Then for each time t: 

• Agent 1 declares f(2t)    = E[f | s(1),f(1),…,f(2t-1)]

• Agent 2 declares f(2t+1) = E[f | s(2),f(1),..,f(2t)]

• Th (Aumann 76, Geanakoplos &  Polemarchakis 82)

• The sequence f(t) converges almost surely. 

• Interpretation: let f be the indicator of some event. 

• By repeatedly announcing their beliefs of the event the 

two agents will converge to the same posterior probability. 

•

•Examples: Biased dice and samples.



Aumann’s example 

• Agent 1 declares f(2t)    = E[f | s(1),f(1),…,f(2t-1)]

• Agent 2 declares f(2t+1) = E[f | s(2),f(1),..,f(2t)]

• Th (Aumann 76, Geanakoplos &  Polemarchakis 82)

• The sequence f(t) converges almost surely. 

• Proof idea

•Let F(t) denote the sigma algebra generated by the 

functions {f(1),…,f(t)}. 
• Then E[f | F(t)], t ¸ 0 is bounded martingale = view 

from the outside. 

• Moreover: f(t) = E[f | F(t)] a.s. 

• Comment: Note that the same argument applies to 

• n agents as well. 



A generalization to directed graphs

• We now consider the same story but with n agents on 

a directed graph G: 

• At time t each vertex v declares it’s expected value 

of f conditioned on its signal and what it has seen up 

to time t: 
• f(v,t) := E[f | s(v), f(w,s) , w 2 N(v), 1 · s · t-1]

• Directed/Undirected <--> Phone vs. Email. 

• Social Network aspect. 

• Assume social network is known.

• Example: interval of length 3 and dice. 

•Q: Do f(v,t) all converge to the same value? 



A generalization to directed graphs

• Q: Is it the case that f(v,t) all converge to the same 

value? 

• Obviously not: 

• If there are two connected components they will not 

converge to the same value. 

• In fact the graph u  v also does not converge. 

.



A generalization to directed graphs

• Q: Is it the case that f(v,t) all converge to the same 

value? 

• Obviously not: 

• If there are two connected components they will not 

converge to the same value. 

• In fact the graph u  v would also not converge. 

• Thm (Parikh, Krasucki): 

• In the graph G is strongly connected, all agents will 

a.s. converge to the same value. 

• Recall: Strongly connected means that for every pair 

of vertices there is a directed path connecting them.



A generalization to directed graphs

Proof Sketch: :
• Let F(v,t) be generated by {f(v,s) : s · t} and conclude 

that f(v,t) converges to f(v) = E[f | F(v)], F(v) = {f(v,s) }

• f(v) is the function closest in L2(F(v)) to f.

• Next we do the same with F’(v,t) generated by 
• {f(v,s) : s · t} [ {f(w,s) : s < t : w 2 N(v)} 

• Again we get that f(v,t) converges to f(v) = E[f | F’(v)] 
• Implies that if v  w in G then |f(v)-f|2 · |f(w)-f|2.

• Strongly connectivity ) 8 u,v: |f(v)-f|2 =  |f(w)-f|2 

• If v  w and f(v)  f(w) then g = 0.5(f(v)+f(w)) 2 F’(v) 

and g closer to f than either f(v) or f(w). 
• Strongly connectivity ) 8 u,v: f(v) = f(w).



Some Things we do know about the model

• Players do not have to converge to the correct 

posterior. 

• Example (Greg): prior (0.5,0.5) two players are given 

uniformly at random two bits whose e-xor is the state. 

• For a finite state space: # of steps to convergence is at 

most # of sigma-algebras on the state. 

• Pf: (Geanakoplos &  Polemarchakis; Joe): 

• When the two sigma-algebras remain the same for both 

players this will remain like that forever. 

• More in GP: Examples where for n steps nothing happen 

and then converge to the same opinion. 



Some Things we do know about the model

• Example: State space [n2] with uniform prior. 

• Player 1 observes groups {1…,n},{n+1,..,2n} etc.

• Player 2 observes groups {1,…,n+1},…, n2}

• True value is 1. 

• The event is {1,n+2,2n+3,…, n2}.

• What will happen? 

• Player 1 will say 1/n

• Player 2 will say 1/(n+1)

• Player 1 learns that it is not n2 but will still say 1/n.

• Player 2 learns that player 1 was not in the last group 

but will still say 1/(n+1). 

• etc. 



Many things we do not know about this model



Many things we do not know about this model

• We do not know how long it takes to converge.

• We do not if it converges to a “good answer”.

• What is the computational complexity of the Bayesian 

process? 

• It is known that if the original space is finite 

convergence will hold after finitely many steps. 

.



Some aspects of the Bayesian approach

• We do not know how long it takes to converge.

• We do not if it converges to a “good answer”.

• What is the computational complexity of the Bayesian 

process? 

•Some partial answers are known. 

• We will talk about a Gaussian model which is:

• Computationally feasible 

• Has rapid convergence. 

• Converges to the optimal answer for every connected 

network. 

• Following model was studied in P. DeMarzo, D. Vayanos, 

and J. Zwiebel. and by Mossel and Tamuz.



The Gaussian Model

• The original signals are N(μ = ?,1).

• In each iteration

– Each agent action reveals her current 

estimate of μ to her neighbors.

– E.g. set price by min utility (x- μ)2

– Each agent calculates a new estimate of μ

based on her neighbors’ broadcasts.

• Assume agents know the graph structure.

• Repeat ad infinitum

• Assume agents know the graph structure.

• Example: interval of length 4.



Utopia
• “Network Learns” Avg(Xv)

• Variance of this estimator is 1/n.

• Could be achieved if everyone 

was friends with everyone.

• Technical comments: This is 

both the 

• ML estimator &  

• Bayesian estimator with uniform 
prior on (-1,1)



Results

• For every connected network:

• The best estimator is reached 
within n2 rounds where 

n = #nodes (DVZ & MT)

• Convergence time can be 

improved to 2* n * diameter (MT)

• All computations are efficient (MT)



Pf: ML and Min Variance.

• Claim 1: At each iteration 

Xv(t) = Bayes Estimator 

= Maximum Like estimator

• Moreover, Xv(t) 2 Lv(t), where 

Lv(t)= span { Xw(0),…,Xw(t-1) : w ~ v}

• Xv(t) is argmin of 

{Var(X) : X 2 Lv(t), E[X] = ¹} 

• Claim: Can be calculated efficiently 



Pf: ML and Min Variance.

• Cor: Var(Xv(t)) decreases with time 

• Note: If Xv(t)  Xu(t), dim of either 
Lv or Lu goes up by 1 (v ~ u)

• ) Converges in n2 rounds.

• Claim: Weight that agent gives 

own estimator has to be at least 

1/n (prove it!)

• ) converges to optimal estimator



Convergence in 2n*d steps

• Claim: If an agent u estimator X remains for 2*d steps 

t,t+1,…t+2d then the process has converged. 

• Pf:

• Let L = Lu(t+2d)

• Let v be a neighbor of u. 
• Xt+1(v),…Xt+2d-1(v) 2 L. 

• X 2 Lv(t+1) 

• So Xt+1(v) = … = Xt+2d-1(v)  = X

• If w is a neighbor of u then: 

• Xt+2(v) = … = Xt+2d-2(v)  = X

• By induction at time t+d all estimators are X.  



Truncated information

• Why could we analyze the cases so far? 

•

•A main feature was that agents declarations were 

martingales. 

• A more difficult case is where agents declarations 

are more limited. 

• Example: +/- actions / declarations. 

• This will be discussed next week. 


