
Social Networks and Social Choice Lecture Date: September 7, 2010

Lecture: Aggregation of General Biased Signals

Lecturer: Elchanan Mossel Scribe: Miklos Racz

So far we have talked about Condorcet’s Jury Theorem [6] and its extensions in situations where the signals
were binary. In this lecture we look at extensions where the signals are not binary.

1 Decision between k alternatives

First, let us consider the case when n people make a decision between k alternatives, denoted 1, . . . , k, where
one of the k alternatives is correct. We can make various assumptions on the type of signals individuals
receive. The most general assumption is the following: there is a signal space X (e.g. X = R), and distri-
butions P1, . . . , Pk on X, and if the correct alternative is i, then each individual receives independently a
signal distributed according to Pi. A nice non-general assumption that we analyze in more detail is this: each
individual receives independently the correct alternative with probability p > 1/k, and each other alternative
with probability (1− p) / (k − 1).

1.1 Plurality functions

Consider this latter setup; what should the aggregation function be? We now introduce the concept of a
plurality function and show that it is a good aggregation function; in fact, we will show below that in a sense it
is the best among fair aggregation functions. Let na (x) denote the number of a’s in the vector x. A function
f : [k]

n → [k] is a plurality function if f (x) = a if na (x) > nb (x) for all b 6= a. Note that ties in this case
cannot be avoided (as opposed to the two alternatives case with n being odd), and so there are many plurality
functions. A function f : [k]

n → [k] is fair if for all σ ∈ Sk, we have f (σx) := f (σx1, . . . , σxk) = σf (x). Note
that fairness corresponds to treating all alternatives equally—their names do not matter. For example, if f
is a plurality function, n = 5, k = 3, and f (2, 2, 3, 3, 1) = 2, then fairness of f means that f (3, 3, 2, 2, 1) = 3,
f (1, 1, 3, 3, 2) = 1, etc.

[Note that now there are two ways permutations act in our setup. First, we can permute the alternatives:
x→ σx for σ ∈ Sk. Symmetry with respect to the alternatives corresponds to the notion of fairness. Second,
we can permute voters: x → xσ for σ ∈ G where G is a group acting transitively on [n]. Symmetry with
respect to the voters corresponds to the notion of transitivity.]

The following exercises are all homework:

• Prove that for all n and k every plurality function is monotone. (Monotonicity in the case of more
than two alternatives is defined in Section 3.)

• Prove that for all n and k there exists a fair plurality function.

• Prove that for all n and k there exists a transitive plurality function.

The following theorem (an analogue of the similar theorem for the two alternatives case) shows that a
plurality function is a good aggregation function.

1

2 Lecture: Aggregation of General Biased Signals

Theorem 1.1. Consider the previous setup, where each individual receives independently the correct alter-
native with probability p > 1/k, and each other alternative with probability (1− p) / (k − 1). Assume further
a uniform prior. Write c (n) = P (Plurality is correct). Then

lim
n→∞

c (n) = 1.

The same is true even for p (n) for which p (n)− 1/k >> n−1/2. If p (n)− 1/k << n−1/2 then c (n)→ 1/k.
Furthermore, if we write a (n) = p (n)− 1/k, then for all n we have

c (n) ≥ 1− 2ke−a
2(n)n.

Proof. Generalization of the binary case to k alternatives.

In fact:

Theorem 1.2. Plurality maximizes the probability of being correct among fair functions.

Proof. Same as proof for majority.

1.2 Estimation point of view

In a way this is a classical estimation problem: there is a random variable S with a uniform prior, and our
goal is to estimate S given the signals X1, . . . , Xn. We choose the s which maximizes P (S = s|X1, . . . , Xn),
but since the uniform is prior, this is the same as maximizing P (X1, . . . , Xn|S = s) (by Bayes’ rule). The
estimation point of view is valid also for the general signals picture: the optimal choice function chooses the
s maximizing P (S = s|X1, . . . , Xn). One can apply general results from statistics to obtain similar results
to the ones above, but one needs to think carefully about how to measure bias to obtain guarantees.

2 Two examples of more general signals

2.1 Possibility of staying at home

Now let us consider the possibility of staying at home. Suppose there are two alternatives, + and −, and
one votes for the correct alternative with probability p, one votes for the wrong alternative with probability
q < p, and one does not vote with probability 1− p− q ≥ 0. Assuming a uniform prior, what is the optimal
aggregation function? It is again the majority, which can be shown by a likelihood calculation. The next
question is how large should p− q be to aggregate well? As before, p− q >> n−1/2 suffices, but in this case
this is not always necessary. Consider the degenerate case of q = 0: then all the majority needs in order to
be correct is one person who goes and votes (since everyone who votes, votes correctly). In this case

P (nobody votes) = (1− p)n

and so for instance p = log (n) /n suffices for the majority to aggregate.

Lecture: Aggregation of General Biased Signals 3

2.2 Decision between k alternatives based on rankings

Let us now consider the following setup. There are again k possible alternatives, but now each voter receives
a ranking. In this ranking the correct alternative is at location i with probability pi, and all other alternatives
are placed uniformly at random. So a particular ranking which has the correct alternative at location i has
probability pi/ ((k − 1)!). We assume that p1 > · · · > pk (and of course

∑
i pi = 1). Assuming a uniform

prior, what is the optimal aggregation function? To answer this, let us calculate the log-likelihood of a
sample.

Si := logP (rankings|intended winner is i) = −n log ((k − 1)!) + # {rankings where i is top} log p1

+ #
{

rankings where i is 2nd place
}

log p2

+ . . .

+ #
{

rankings where i is kth place
}

log pk.

As discussed in Section 1.2, the optimal function chooses i which maximizes Si. Another question is: what
is the difference needed between the pi’s for aggregation?

Note: the voting method defined above is a generalization of the Borda count, a voting method developed
by Jean-Charles de Borda (May 4, 1733 - February 19, 1799), who was a French mathematician, physicist,
political scientist, and sailor [3]. In the Borda count, for every vote the alternative voted first place gets k
points, the alternative voted second place gets k− 1 points, and so on, until finally the alternative voted last
gets 1 point. The points of each alternative are summed up over all votes, and whoever has the most points
wins the election.

3 Beyond the plurality function

What can we say about other aggregation functions, e.g. the U.S. electoral college? We again assume simple
signals: each individual receives independently the correct alternative with probability p > 1/k, and each
other alternative with probability (1− p) / (k − 1). Again we wish to consider functions that are (i) fair—
names of alternatives do not matter, and (ii) monotone—a stronger vote in one direction should not hurt
this direction. We defined fairness in Section 1.1, let us now define monotonicity. We first define two types
of monotonicity among vectors, one stronger than the other. For two vectors x, y ∈ [k]

n
and for a ∈ [k]

write x <a y to indicate that yi = a holds whenever xi 6= yi (“y is leaning more towards a than x”). For
two vectors x, y ∈ [k]

n
and for a ∈ [k] write x ≤a y if xi = a implies yi = a. Certainly x <a y implies

x ≤a y. We say that a function f : [k]
n → [k] is monotone if for all a ∈ [k] and all x, y ∈ [k]

n
, x <a y implies

f (x) ≤a f (y). So if f is monotone, a wins for vote x and x <a y, then a also wins for vote y. The following
result gives sufficient conditions for aggregation.

Theorem 3.1 (Kalai-Mossel). Suppose f : [k]
n → [k] is a monotone transitive aggregation function where

for p = 1/k it holds that P (f = a) ≥ 1/2k for all a. Then there exists c = c (k) such that for every ε < 1/3
it holds that for

p >
1

k
+ c

(log (1− ε)− log (1/2k)) log log n

log n

we have

P (f is correct) ≥ 1− ε.

We do not prove this theorem. Note that this shows aggregation in the case of the electoral college with all
states of equal sizes, and for plurality functions, though in these cases even a smaller bias of Cn−1/2 suffices.

4 Lecture: Aggregation of General Biased Signals

4 Additional Structure

So far we have assumed that the different alternatives and signals have no additional structure. We now
consider two examples of such structures. The first example deals with signals that are real numbers, while
the second example deals with signals that are rankings.

4.1 Signals that are real numbers

Let us look at the following setup. Assume that the true state of the world is either s = +1 or s = −1.
Each voter receives independently a real-valued signal distributed according to N (as, 1) where a > 0 is some
constant. How should people vote? One option is for voters who got a positive signal to vote +1 and voters
who got a negative signal to vote −1, and then take a majority vote. This is a pretty good voting method; for
example a >> n−1/2 suffices to get the correct answer with probability tending to 1. But it is not optimal.
The best Bayesian decision rule (assuming a (1/2, 1/2) uniform prior) is the following: each voter declares
their signal Xi and the outcome of the vote is the sign of

∑
iXi. Note however, that this voting rule lets

one cheater determine the outcome of the election: the cheater just says a number with very large absolute
value and with the desired sign. The majority vote of the signs of the signals is more robust.

In general, we have the following theorem.

Theorem 4.1 (Keller-Mossel-Sen [8]). If f : Rn → {−1,+1} is a monotone transitive function with

Ea=0 (f) = 0, then Ea (f)→ 1 if a >> (log n)
−1/2

.

So any democratic function would work. However, non-democratic functions (e.g. dictator, functions of a
few voters) will not aggregate even for a constant a.

4.2 Signals that are rankings

Now let us discuss n voters who rank k alternatives, and the outcome should be a ranking of the k alternatives.
A good question is: what is a good model here?

4.2.1 Plurality vote

Should we use a plurality vote? This may not be a good idea for two reasons.

First of all, there are computational considerations. If we have k alternatives then there are k! possible
rankings, which grows very fast in k. Consider a distribution on the rankings where the true permutation is
twice as likely as any other permutation; if we apply plurality rule we may need on the order of k! voters to
get a good answer. If k is large (say even k = 100), then this is too big.

Second, it may happen that a very large percentage of voters ranks some alternative at the top—in which case
it is a “no-brainer” to rank this alternative at the top—but the plurality function does not do this. Consider
the following example. There are (k − 1)! + 2 voters, the first (k − 1)! all give a different ranking, but all of
them rank alternative 1 at the top, and the last two voters give the same ranking, in which alternative 1 is
not at the top. A plurality function would have this latter ranking as its outcome, not ranking alternative
1 at the top.

Lecture: Aggregation of General Biased Signals 5

4.2.2 Consensus ranking

Instead of a plurality vote, another natural output to consider is the consensus ranking. Given a set of
rankings {π1, . . . , πn}, the consensus ranking is the following “average”:

π0 = argmin

n∑
i=1

d (πi, π0) ,

where d is a distance on Sn, the set of permutations of n objects. The most natural distance to consider is
the Kendall distance dK , given by

dK (π, σ) = # {(i, j) : π (i) < π (j) and σ (i) > σ (j)} .

A historical note: Maurice Kendall (6 September 1907 - 29 March 1983) was a British statistician; Kendall’s
τ rank statistic uses the Kendall distance to test if two variables are statistically independent.

4.2.3 Mallows’ model

Mallows’ model, introduced by Colin Mallows in [10], is a classical model for noisy permutations. This
is an exponential family model in β—given that the “true” ranking is π0, the probability of observing a
permutation π is exponentially small in β times the Kendall distance between π and π0:

P (π|π0) =
1

Z (β)
e−βdK(π,π0),

where β > 0 and Z (β) is a normalizing constant. Assuming a uniform prior on the true ranking, the
maximum likelihood estimator of the true ranking given rankings π1, . . . , πn is the consensus ranking defined
above.

Assume β > 0 is a fixed constant. How many voters are needed in order to be able to recover the true
ranking with good probability? Algorithmically: how can one find the consensus ranking of given rankings
π1, . . . , πn? These are natural questions to ask regarding the model, and we now provide some pointers to
the literature dealing with these questions. Bartholdi, Tovey and Trick showed in [2] that the optimization
problem of finding the consensus ranking of given rankings is NP-hard. Nevertheless, several papers deal with
approximations to the solution. Cohen, Schapire and Singer provide simple and efficient greedy algorithms
that are guaranteed to find a good approximation (in fact, a 2-approximation) to the true ranking [5].
Ailon, Charikar and Newman provide a randomized algorithm that gives an expected 11/7-approximation
[1]. Kenyon-Mathieu and Schudy provide a polynomial time approximation scheme for the problem, i.e. for
every ε > 0 they provide a (1 + ε)-approximation which runs in polynomial time in the number of alternatives
that are ranked [9]. Meila, Phadnis, Patterson and Bilmes provide a branch and bound algorithm that gives
back the consensus ranking exactly; the algorithm has factorial running time in the worst case, but it can
do better in some cases [11].

Let us now discuss the recent paper by Braverman and Mossel [4] in more detail, which gives a randomized
polynomial time algorithm for computing the consensus ranking exactly with high probability. Let us change
the notation to follow that which is used in [4]: let n denote the number of possible alternatives, and let r
denote the number of sample rankings (i.e. the number of voters). The main result is the following.

Theorem 4.2 (Braverman-Mossel [4]). Given r independent samples from the Mallows model, π1, . . . , πr,
there exists a randomized polynomial time algorithm which finds the maximum likelihood solution (i.e. the
consensus ranking) τ exactly with high probability (say at least 1−n−100). The running time of the algorithm

is n1+O((βr)−1); in particular, the running time tends to almost linear as r grows. The query complexity of
the algorithm is O (n log n) (with the constant depending on β and r).

6 Lecture: Aggregation of General Biased Signals

The proof consists of two ingredients. The first ingredient is concerned with the statistical properties of the
generated permutations πi in terms of the true order π0. Then with high probability it holds that∑

i

|π0 (i)− τ (i)| = O (n/ (βr)) , and max
i
|π0 (i)− τ (i)| = O (log (n) / (βr)) .

This is important in order to show that if we have a solution π∗ which is close to the true ranking π0, then
it is also close to the consensus ranking τ . We can arrive at such a π∗ ordering by “averaging”: taking the
average of the locations of element x under the πi’s and ranking the elements according to this locates each

element within a distance of O
(

1
βr log n

)
from its location in the true order π0 with high probability.

The second ingredient is a dynamic programming algorithm which finds τ given a starting point where each
element is at most k away, with running time O

(
nk226k

)
(see [4, Lemma 16]). In our case k = O (log n),

giving a polynomial time algorithm.

The algorithm goes as follows. First notice the following. If i < j are indices, I = [i, j], then the set
of elements SI = {τ (i) , . . . , τ (j)} can be found amongst the elements found at indices in the interval
[i− k, j + k], and the elements found at indices in the interval [i+ k, j − k] are surely amongst the elements
in SI . So selecting the set SI = {τ (i) , . . . , τ (j)} involves selecting 2k elements from the elements found at
indices in [i− k, . . . , i+ k− 1]∪ [j− k+ 1, j + k], thus the number of possible SI ’s is bounded by

(
4k
2k

)
≤ 24k.

Without loss of generality suppose that n is a power of 2, and divide [n] up into intervals by halving: first
into 2 intervals of length n/2, then 4 intervals of length n/4, and so on, finally into n/2 intervals of length
2. In total we have n− 1 intervals of length 2, 4, 8, Now starting from intervals of smaller length, store
optimal permutations of all variations of possible elements on a given interval. For each interval there are
at most 24k variations of possible elements, and we have n− 1 intervals altogether, so the storage needed is
polynomial in n if k = O (log n). The question now is that if we have two adjacent intervals of length l that
are pre-sorted, then how do we sort the union of these two intervals. The observation is that the “middle”
of the two respective intervals will remain unchanged, and we only need to go through the possibilities of
swapping elements at the “edge” of the two intervals where they meet (which is the “middle” of the big
interval). (See lecture slides for an illustration.) In the end, the runtime can be calculated to be

logn∑
i=1

#intervals of length 2i ·#checks · cost/check =

logn∑
i=1

O

(
n · 24k

2i
· 22k · k2

)
= O

(
nk226k

)
.

4.2.4 Some notes on related problems

Disregarding its social context, the problem above is an example of sorting from noisy information. Here are
two more examples of a similar form.

Consider a sorting problem where for each query comparing two elements x and y, the correct answer is
returned with probability 1/2 + ε, independently for each query. Each pair can be queried as many times
as we want. How many queries are needed to find the correct order with probability 0.9999? If there is no
randomness, then O (n log n) queries are needed, using any of the standard comparison sort algorithms. If
there is randomness, then repeating each query O

(
ε−2 log n

)
times we can determine the order between each

pair with high probability. However, using more sophisticated methods the true order can be found in query
complexity O (n log n) with high probability, see [7].

Consider a sorting problem where for each query comparing two elements x and y, the correct answer is
returned with probability 1/2+ε, independently for each query. However, each pair can be queried only once
now. Braverman and Mossel show in [4] a randomized polynomial time algorithm that finds the maximum
likelihood solution with high probability.

Lecture: Aggregation of General Biased Signals 7

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating Inconsistent Information: Ranking and Clustering.
Journal of the ACM (JACM), 55(5):1–27, 2008.

[2] J. Bartholdi, III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to tell who
won the election. Social Choice and Welfare, 6:157–165, 1989. 10.1007/BF00303169.

[3] J.C. Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences, 2:85,
1781.

[4] M. Braverman and E. Mossel. Sorting from noisy information. Arxiv 0910.1191, 2010.

[5] W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to Order Things. Journal of Artificial Intelligence
Research, 10:243–270, 1999.

[6] M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité
des voix. 1785.

[7] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM Journal on
Computing, 23(5):1001–1018, 1994.

[8] N. Keller, E. Mossel, and A. Sen. Geometric influences. Arxiv 0911.1601, 2010.

[9] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of Computing, pages 95–103. ACM, 2007.

[10] C.L. Mallows. Non-null ranking models. I. Biometrika, 44(1-2):114–130, 1957.

[11] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus ranking under the exponential model.
In Proceedings of the Twenty-Third Annual Conference on Uncertainty in Artificial Intelligence, pages
285–294, Corvallis, Oregon, 2007. AUAI Press.

