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In the next few lectures the focus is going to move away from aggregation of signals. We will
instead focus on cases in which voters are unbiased. In this scenario, the focus in no longer on
aggregation. Instead the focus shifts to other properties of the systems such as robustness to errors
and manipulation.

1 Motivation

Why should we study an unbiased scenario? Well, it can be thought of as a stress-test for the voting
methods under consideration. When there is a strong bias, many voting methods are robust to
errors, manipulations etc. In order to compare different voting methods it makes sense to stress-test
their behavior under the most random scenario, i.e., the uniform measure over voters.

2 Voting Schemes

Let us define the voting systems we are studying.

Definition 1. A voting scheme is a function f : {−1, 1}n → {−1, 1}.

According to this definition, there are two candidates, namely −1 and 1, and there are n voters
casting their direct votes for each candidate. The function f receives a configuration of votes and
determines the outcome.

As in the previous lectures, we have some natural assumptions about the function f .

Definition 2. A voting scheme is monotone if for each x, y ∈ {−1, 1}n we have x ≥ y =⇒ f(x) ≥
f(y). Here x ≥ y means that xi ≥ yi for each i.

The assumption of being monotone is natural. Being monotone means that if some voters switch
their votes in favor of the winning candidate, the losing candidate would not suddenly become the
winner.

Definition 3. A voting scheme is fair if for each x ∈ {−1, 1}n we have f(−x) = −f(x).

Being fair means being indifferent to names of the candidates. In other words if we replace the
names of the two candidates, that is if we switch each −1 by 1 and vice versa, then the same person
is still going to win, under her new name.

Example 4. Two important family of voting schemes are majority and electoral college,
both of which are fair and monotone. Assume that n is an odd number, then

• majority is the function f that associates the most frequent vote as the result. In other
words f(x1, . . . , xn) = sign(x1 + · · ·+ xn).
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• Assuming that n = m2, electoral college is a two-level majority vote with m states
each holding a population of m. In electoral college we first compute the majority of
x1, . . . , xm, the majority of xm+1, . . . , x2m and so on. At the end we end up with m numbers
in {−1, 1}, and we simply compute another majority among these m numbers to determine
the final result.

The two assumptions of being monotone and fair are natural enough to assume for every voting
scheme under consideration. But there are families of voting schemes that seem unnatural, but still
satisfy these two assumptions.

Example 5. The most important example of an unusual voting scheme, is the dictator family.
As its name suggests there is a voter i who determines the final outcome. More precisely there is an
i ∈ [n] for which f(x1, . . . , xn) = xi. It’s easy to see that this function is both monotone and fair,
but in some sense it’s unusual because different voters are treated differently.

We are sometimes interested only in the functions which are democratic; functions that do not
differentiate between voters.

Definition 6. A voting scheme f satisfies weak democracy if there exists a transitive permutation
group Γ ≤ Sn such that for all σ ∈ Γ and x = (x1, . . . , xn) ∈ {−1, 1}n we have

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

The transitivity assumption, that for each i, j ∈ [n] there exists a σ ∈ Γ for which σ(i) = j, ensures
that voters i and j have in some sense equal power.

One might ask why we didn’t consider all permutations, and instead restricted ourselves to a sub-
group.

Definition 7. A voting scheme f satisfies strong democracy if for every possible permutation σ ∈ Sn
and every voting configuration x ∈ {−1, 1}n we have

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

To answer the question, it’s easy to see that strong democracy, along with monotonicity and fairness,
implies being majority. So if we restrict ourselves to strongly democratic functions, we’re restricting
ourselves to a very special class of functions. On the other hand there are interesting functions that
satisfy weak democracy, but not strong democracy. electoral college is one example.

Proposition 8. A monotone and fair voting scheme that satisfies strong democracy is majority.

Proof. Strong democracy implies that f is only a function of the number of 1’s among x1, . . . , xn.
Monotonicity implies that there is a k for which f(x) = 1 if and only if there are at least k votes
in favor of 1. Now consider two configurations, one with k votes for 1 and the other one with k − 1
votes for 1. Using fairness, a configuration with n − k votes for 1 should result in −1 winning and
a configuration with n − k + 1 votes for 1 should result in 1 winning. Therefore n − k < k and
n − k + 1 ≥ k. Therefore n − k + 1 = k or in other words k = (n + 1)/2. This shows that f is
majority.
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3 Worst Case vs. Average Case

As mentioned previously, we can not hope for a voting scheme which is error-tolerant in the worst
case. The following proposition formalizes this fact.

Proposition 9. Any non-constant voting scheme is prone to errors of a single voter (single-flip
errors).

Proof. By assumption, there exist configurations x, y for which f(x) 6= f(y). Now consider the
configurations zi = (x1, . . . , xi, yi+1, . . . , yn). We have z0 = y and zn = x. If there exists an i for
which f(zi) 6= f(zi+1), we are done, because zi and zi+1 differ in only one coordinate. But if no
such i exists we must have f(y) = f(z0) = f(z1) = · · · = f(zn) = f(x) which is a contradiction.

In some sense single-flip errors are the smallest possible set of errors one can consider. So this
proposition refutes any hope for a positive result in the worst case scenario.

Now we turn to the average case scenario. We have to define the distribution on the set of possible
configurations and the distribution on the set of possible errors that can arise, in order to analyze
the average case. The following problem formulates this in a precise manner.

Problem 10. Suppose that x ∈ {−1, 1}n is a random variable with uniform distribution. In other
words x = (x1, . . . , xn) where x1, . . . , xn are independent random variables each taking values in
{−1, 1} and having expected value 0. Now let y = Nε(x) be the random variable obtained from x by
flipping each of the coordinates with probability ε. That is yi = xi with probability ε and yi = −xi
with probability 1− ε. Now for a given voting scheme f , what is P [f(x) 6= f(y)]?

This probability which we denote by Sf (ε) shows how much the function f tolerates errors. The
most stable function has the lowest Sf (ε) and the most sensitive function has the highest Sf (ε).

While the last problem asks to calculate this quantity, perhaps a more interesting question is to
find functions f which are stable. Of course constant functions are not appreciated, so f must be a
sensible function; maybe a monotone and fair function which perhaps satisfies weak democracy.

4 Stability without Democracy

Suppose that we only require f to be monotone and fair. Then what function(s) would be the most
stable?

Theorem 11. dictator is the unique (up to the choice of dictator) most stable voting scheme.

Proof. Let N be a 2n × 2n matrix where each row and each column corresponds to one element of
{−1, 1}n. Now let the entry corresponding to row x̂ and column ŷ, namely N(x̂, ŷ), be equal to
the probability of getting ŷ after flipping each coordinate of x̂ with probability ε. It’s easy to see
that N is symmetric, because each entry only depends on the number of coordinates the vectors
corresponding to the row and the column differ on. So N(x̂, ŷ) = N(ŷ, x̂).

It’s easy to see that E[xiyi] = P [xi = yi]×1+P [xi 6= yi]×−1 = (1−ε)−ε = 1−2ε is the covariance
between xi and yi because both have mean 0. For some reason it’s easier to work with 1− 2ε than
ε, so let η = 1− 2ε = E[xiyi].
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A function f : {−1, 1}n → {−1, 1} can be thought of as a vector of dimension 2n, where each
dimension corresponds to a x̂ ∈ {−1, 1}n. Because f is fair we have

E[f(x)] = E[−f(−x)] = −E[f(−x)]

but −x has the same distribution as x, which shows that E[f(x)] = 0. Similarly E[f(y)] = 0,
because y has the same distribution as x. Now note that

E[f(x)f(y)] = P [f(x) = f(y)]× 1 + P [f(x) 6= f(y)]×−1 = (1− Sf (ε))− Sf (ε) = 1− 2Sf (ε)

So instead of Sf (ε) we can study the quantity Z(f, η) = E[f(x)f(y)] = 1 − 2Sf (ε) and try to
maximize it (we were after minimizing Sf (ε)). But note that E[f(x)f(y)] = E[E[f(x)f(y)|x]] =
E[f(x)E[f(y)|x]]. And we can calculate E[f(y)|x] using N . We have

E[f(y)|x] =
∑

ŷ∈{−1,1}n
P [y = ŷ|x]f(ŷ) =

∑
ŷ

N(x, ŷ)f(ŷ)

which when represented as a vector (indexed by x) is equal to Nf . Therefore we have

Z(f, η) = E[f(x)× (Nf)(x)]

which reminds us of the Fourier analysis. The tools we need to use from Fourier analysis can be found
in the appendix. Here we assume sufficient familiarity with Fourier analysis of Boolean functions.
Let {uS |S ⊆ [n]} be the usual Fourier basis. Also let < f, g >= E[fg] be the usual inner product
defined on the space of functions (or vectors of dimension 2n). We have Z(f, η) =< f,Nf >. Now
let’s write f in the Fourier basis:

f =
∑
S⊆[n]

fSuS

One magical property of uS is that it’s an eigenvector of N . In order to show this, we have to
show that NuS is a multiple of uS . But we already know that NuS can be written as a linear
combination of uT ’s. So we have to show that each coefficient in this linear combination is 0 except
for uS ’s coefficient. Because of the orthonormality of the basis, the coefficient of uT is equal to

< uT , NuS >= E[uT (x)× (NuS)(x)] = E[uT (x)E[uS(y)|x](x)] = E[uT (x)uS(y)]

This equalities follow in the same way as we have shown < f,Nf >= E[f(x)f(y)]. Now note that

E[uT (x)uS(y)] = E[
∏
i∈T

xi
∏
i∈S

yi] = E[
∏

i∈S∩T
xiyi

∏
i∈S\T

yi
∏

i∈T\S

xi]

=
∏

i∈S∩T
E[xiyi]

∏
i∈S\T

E[yi]
∏

i∈T\S

E[xi]

where the last equality follows because of the independence of each pair of xi, yi from all other
random variables. We know that E[xi] = E[yi] = 0 and E[xiyi] = η. Therefore if either S\T or T\S
are non-empty the above expression is equal to 0. It’s easy to see that for S 6= T one of these two
sets is non-empty. When S = T the expression above is equal to η|S|.

Therefore the Fourier coefficient of NuS with respect to uT is equal to 0 when S 6= T and is equal
to η|S| when S = T . So NuS = η|S|uS . Now back to the original problem, we have

< f,Nf >=<
∑
S

fSuS ,
∑
S

η|S|fSuS >=
∑
S

η|S|f2
S
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Note that for S = ∅ we have f∅ =< f, 1 >= E[f ] = 0. So the above sum can be written as∑
S 6=∅

η|S|f2
S = η

∑
S 6=∅

η|S|−1f2
S

Now note that |η|S|−1| ≤ 1 because |η| = |1− 2ε| ≤ 1. So an upper-bound for Z(f, η) would be

Z(f, η) ≤ η
∑
S 6=∅

f2
S = η <

∑
S

fSuS ,
∑
S

fSuS >= η < f, f >

But note that < f, f >= E[f2] = E[1] = 1 because f takes values in {−1, 1}. So

Z(f, η) ≤ η

When does equality happen? It’s easy to see that equality happens if and only if for each S 6= ∅ we
have η|S|−1f2

S = f2
S . This can only happen when |S| = 1 or fS = 0 (assuming that η 6= 0). So all

the Fourier coefficients of f except for those corresponding to singletons are zero. So

f(x) =
∑
i∈[n]

f{i}u{i}(x) =
∑
i∈[n]

f{i}xi

Note that f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1,−1, xi+1, . . . , xn) = 2f{i}. But since f is
monotone and takes values in {−1, 1} this quantity must be inside {0, 2}. So 2f{i} ∈ {0, 2} which
means that f{i} ∈ {0, 1}. But again we know that

∑
i f

2
{i} = 1, so there must be a unique index i

for which f{i} is nonzero. Therefore f is equal to xi for some i.

Remark 12. The above proof fails when η = 0, or equivalently when ε = 1/2. But this is no surprise,
because when ε = 1/2, essentially y is independent of x. So the probability of f(x) 6= f(y) is exactly
1/2 for any fair function, because half of the configurations result in 1 and the other half result in
−1.

5 Stability with Democracy

Now let’s find out how stable can a democratic function be. One natural function to examine is
majority. The following theorem states the stability of majority when the number of voters goes
to infinity.

Theorem 13. (Sheppard [4])1 If f is the majority in a population of n, then

lim
n→∞

Z(f, η) =
2 arcsin(η)

π

where Z and η are the same notations from the proof of theorem 11.

Proof. The result can be obtained after a standard application of the two-dimensional central limit
theorem. Let zi = (xi, yi) be the two-dimensional vector. Clearly z1, z2, . . . are independent and
identically distributed. It’s easy to see that E[zi] = (0, 0). The covariance matrix for each vector is
equal to

Σ =

[
E[x2

i ] E[xiyi]
E[xiyi] E[y2

i ]

]
=

[
1 η
η 1

]
1In the slides, the theorem is said to be due to Sheffield, but I believe the correct person is Sheppard.
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slope =
−
√

1−η2
η
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Figure 1: The event sign(
√

1− η2V + ηU) 6= sign(U)

Therefore the two-dimensional central limit theorem states that
z1 + · · ·+ zn√

n

D→ N (0,Σ)

where D→ means convergence in distribution. Note that f(x1, . . . , xn) = sign(x1 + · · · + xn) =
sign(x1+···+xn√

n
). Now let Nn = x1+···+xn√

n
and Mn = y1+···+yn√

n
. We’re interested in Z(f, η) =

E[sign(Nn)sign(Mn)]. But we know that (Nn,Mn)
D→ (N,M) where (N,M) is a multivariate

Gaussian N (0,Σ). So the limit of the probability is equal to

E[sign(N)sign(M)]

Here we can write a complicated integral and calculate the desired value. But instead, we use a
simple fact about multi-variate Gaussians: if U, V are random variables in span{N,M} for which
Cov(U, V ) = 0, then U, V are independent. Now let U = N and V = aN + bM . Then

Cov(U, V ) = aVar(N) + bCov(N,M) = a+ bη

Var(V ) = a2Var(N) + b2Var(M) + 2abCov(N,M) = a2 + b2 + 2abη

We want the covariance matrix of U, V to be equal to identity. So we must have a + bη = 0 and
a2 + b2 + 2abη = 1. One choice is a = −η/

√
1− η2 and b = 1/

√
1− η2. One can easily see that

M = (V − aU)/b =
√

1− η2V + ηU . So we want to find out

E[sign(
√

1− η2V + ηU)sign(U)] = 1− 2P [sign(
√

1− η2V + ηU) 6= sign(U)]

where U, V are independent N (0, 1) random variables. Now take a look at the joint probability
distribution of (U, V ) in the plane. The hashed region in figure 1 shows the region corresponding to
the event sign(N) 6= sign(M).

So to compute the probability, we have to integrate the normal distribution over the hashed region.
There are several ways to do this, but the easiest one is to integrate in the polar coordinates. If ∆
denotes the hashed region, and φ(u, v) denoted the p.d.f. for the normal distribution, then

ˆ ˆ
∆

φ(u, v)dudv =

ˆ
r

ˆ
0≥tan θ≥−

√
1−η2/η

φ(r cos θ, r sin θ)dθ × 2πrdr

Now if we look at the inner integral, it’s just an integral over a constant function, because φ is
invariant under rotations. So the integral is proportional to the length of the integration interval
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Value of ε Error probability in majority Error probability in dictator
1% 10%× 2

π ' 6.4% 1%
0.01% 1%× 2

π ' 0.6% 0.01%

Table 1: Errors in majority and dictator

(actually, there are two intervals). So if we compare this to the integral over the whole circle it’s
going to be exactly 2 arctan(

√
1− η2/η)/2π times smaller. Therefore

ˆ ˆ
∆

φ(u, v)dudv =
2 arctan(

√
1− η2/η)

2π

ˆ
r

ˆ
2π≥θ≥0

φ(r cos θ, r sin θ)dθ × 2πrdr

But the integral on the right hand side is just the integral over the whole plane of the normal
distribution, which is equal to 1. So

P [sign(
√

1− η2V + ηU) 6= sign(U)] =
arctan(

√
1− η2/η)

π

Now the limit of Z(f, η) is equal to

lim
n→∞

Z(f, η) = 1− 2
arctan(

√
1− η2/η)

π
= 1− 2

arccos η

π
=

2 arcsin η

π

In order to estimate Sf (ε) when ε is small and n is large, note that

Sf (ε) =
1− Z(f, η)

2
' π − 2 arcsin η

2π
=

arccos η

π

In particular note that when ε→ 0, we have η → 1 and so Sf (ε)→ 0. So

ε =
1− η

2
' 1− cos(πSf (ε))

2
' π2Sf (ε)2

4

where we used the first nonzero Taylor expansion term in the last step. This means that

Sf (ε) ' 2

π

√
ε

In comparison, for dictator the result was

Sf (ε) = ε

which is far better than majority. To get a better sense of the difference between these two errors,
look at table 1.

Example 14. Using the estimation for majority, one can also estimate the probability of error in
the electoral college. Given that the probability of error for an individual is ε, the probability
of error for a state is roughly 2

√
ε/π. Now we can treat each state as an individual and use the

estimation one more time to see that the probability of error for the entire election is equal to
2
√

2
√
ε/π/π = Θ( 4

√
ε), which is worse than majority.
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The natural question to ask is whether we can come up with a democratic function that is more
stable than majority. The answer is no; the following theorem states that majority is essentially
the best among the set of functions with low influence (which includes the class of weakly democratic
functions).

Theorem 15. (Mossel, et al. [3]) If a family of functions fn : {−1, 1}n → {−1, 1} satisfy E[fn] = 0
and

max
1≤i≤n

{Infi(fn)} = o(1)

where Infi(fn) = Ex[Varxi
[f(x)]] is the influence of the i-th voter, then

lim
n→∞

Sfn(ε) ≥ 1

2
− arcsin(1− 2ε)

π

The proof is not going to presented here, but note that the bound proven is tight for majority,
which means that asymptotically majority is the best we can get.
Remark 16. It can be shown that a family of weakly democratic function satisfies the conditions of
theorem 15. Because Infi(fn) is the same for all i and so Infi(fn) = 1

nEx[
∑
j Varxj

[f(x)]]. As we
will see in the next section this quantity is maximized for majority. For majority it’s roughly
equal to θ( 1√

n
) = o(1).

6 A Different Error Model

Interestingly, in another reasonable model of errors, majority is the worst function. In this model
the vector y of registered votes is obtained from x not by flipping each coordinate randomly, but
by flipping exactly one random coordinate. So y = (x1, . . . ,−xi, . . . , xn) with probability 1/n for
i = 1, . . . , n.

Proposition 17. Under the single coordinate-flip error model, majority has the most probability
of error among all monotone functions.

Proof. Consider all possible configurations for (x, y). There are exactly n2n such configurations,
all happening with equal probabilities. Let the set of all possible configurations be S ⊆ {−1, 1}2n.
Then we want to find the function f which maximizes∑

(x,y)∈S

|f(x)− f(y)|

Now let’s partition S = S1 ∪ S2, where S1 is the set of (x, y) for which x > y and S2 is the set of
(x, y) for which x < y. Because x, y differ in only one position, one of x < y and y < x must be true
for them, so this is a valid partitioning. Now because f is monotone we have∑

(x,y)∈S

|f(x)− f(y)| =
∑

(x,y)∈S1

(f(x)− f(y)) +
∑

(x,y)∈S2

(f(y)− f(x))

Given some fixed x, the number of y’s for which (x, y) ∈ S1 is equal to #1(x) where #s(x) denotes
the number of coordinates of x which are equal to s. Similarly the number of y’s for which (x, y) ∈ S2

is equal to #0(x). We get similar numbers when we fix y. So in the end, the above sum can be
written as∑

x

(#1(x)−#0(x))f(x) +
∑
y

(#1(y)−#0(y))f(y) = 2
∑
x

(#1(x)−#0(x))f(x)
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Now putting aside the monotonicity condition, it’s clear that in order to maximize the above quantity
we have to set f(x) = sign(#1(x)−#0(x)) which is exactly the same as majority, which happens
to be a monotone function too.

As we have speculated at the end of the last section, the probability of error in the new model has
something to do with the quantity I(f) := Ex[

∑
iVarxi

[f ]]. In fact it’s relatively easy to see that
this probability is exactly equal to 1

nEx[
∑
iVarxi [f ]].

For majority we have I(f)2 ' 2n/π, because there are approximately n
(
n
n/2

)
pairs of adjacent

x, y for which majority gives different answers; so the probability of error is roughly equal to
n
(
n
n/2

)
/(n2n) which is approximately

√
2/(πn). So I(f) which is n times this probability is roughly

equal to
√

2n/π. Note that as n goes to infinity, the error probability gets arbitrarily close to zero.

The relationship between the new error model and the previous error model is not obvious at first,
but it can be seen that in the previous model when ε is no longer a constant and satisfies ε� 1/n,
we approximately get the new model. Because when ε� 1/n the probability of having at least two
flips is much smaller than the probability of having one flip.

In sum, when ε = Ω(1), majority is the most stable and when ε = o(1/n), majority is the most
sensitive.

Even though majority is the most sensitive function in the new error model, the probability that
it reports an incorrect outcome is still not as large as a constant. A natural extension of this model
is to flip not just 1 but g(n) random coordinates where g(n) is a function of n. How large should
g(n) be in order to get a constant error probability? This question is interesting in many contexts
like learning, neural networks, hardness amplification and etc.

Again we fall back on our previous model, but with a non-constant flip probability. The question is
how large should ε be to get a constant Sf (ε). We are still interested in fair monotone functions.

Using the Fourier analysis we can express a function f as
∑
S⊆[n] fSuS . The previous proposition

shows that I(f)2 � 2n/π where � means being smaller asymptotically. But note that Infi(f) =∑
i∈S f

2
S , so

I(f) =
∑
i

Infi(f) =
∑
S

|S|f2
S

This can also be shown using the Russo’s formula from lecture 1. As we have seen in the proof of
theorem 11 the error probability when we flip each coordinate with probability ε is equal to

1−
∑
S η
|S|f2

S

2

where η = 1− 2ε. So in order to maximize this quantity, we have to minimize∑
S

η|S|f2
S

Let xS = f2
S . Now relaxing the condition of f being a fair monotone function whose range is {−1, 1},

we get the following optimization problem

Minimize
∑
S

η|S|xS

Subject to
∑
S

|S|xS ≤ α '
√

2π/n∑
S

xS = 1

xS ≥ 0
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The equality
∑
S xS = 1 is true before relaxation, because

∑
S f

2
S =< f, f >= 1. Now because ηx

is a convex function, using the Jensen’s inequality we get∑
xSη

|S| ≥ η
∑

S xS |S| ≥ ηα

Therefore this bound is also true for any function f . So Z(f, η) ≥ ηα where α '
√

2n/π. We want
Z(f, η) to be smaller than a constant less than 1, in order to get constant error probability. So ηα
has to be smaller than a constant less than 1. But we have

ηα = (1− 2ε)α ≥ 1− 2αε

So 2αε has to be Ω(1) which means that ε = Ω(1/
√
n). So we have to flip approximately θ(

√
n)

coordinates to get a constant error probability. Note that because of the concentration bounds it
makes sense to speak of flipping each coordinate with probability 1/

√
n and flipping

√
n random

coordinates, interchangeably.

We have shown a lower bound, but is it tight? This question was first asked by (Kalai, et al. [1]).
The following theorem shows that the bound is roughly tight. They consider a family of functions
rec-majority-k where we do a recursive majority vote. At each step we do a majority among
groups of k voters to reduce the number of votes by a factor of k and we repeat this until we reach
the final vote.

Theorem 18. (Mossel, et al. [2]) The family of functions rec-majority-k satisfies

Z(f, η) � ηα(n,k)

where α(n, k) ' nβ(k) for some function β which satisfies limk→∞ β(k) = 1/2.

The above theorem shows that it’s enough to roughly flip n1−β(k) votes to get a constant error
probability. So we can come as close as we want in the exponent to 1/2 which is essentially our
lowerbound.

Finally a slight modification of a randomized construction by (Talagrand [5]) reaches the lowerbound.
That is there is a family of randomly constructed functions for which flipping c

√
n votes would result

in a constant error probability. For the analysis see (Mossel, et al. [2]). But note that this family is
not explicitly constructed and so the previous result about recursive majorities is not entirely weaker
than this result.

7 Final Remarks

Up until now we have been studying the scenario in which we’re comparing two possible outcomes,
the true original outcome and the outcome after noise. One might consider comparing more than two
outcomes. Suppose that there is a vector x of original votes, and through k independent experiments
we get k vectors y1, . . . , yk. We can assume that each yi is obtained from x by randomly flipping
each vote with probability ε. Then the stability of our function f can be measured by

P [f(y1) = · · · = f(yk) = f(x)]

The equality with f(x) is optional; if we omit it, little is going to change. The intuition is that
the probability of error is small, so the probability of having k errors is going to be really small
compared to the probability of having no errors.
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Now when k ≤ 3 it can be shown that dictator is the most stable function. On the other hand
if n is fixed and k → ∞, then majority is going to be the most stable function. Strangely, if k is
something in between, then neither majority nor dictator is going to be the most stable function.
Taking the majority over a subset of voters would result in a better stability than both majority
and dictator (note that we get majority when this subset is the whole set and we get dictator
when the subset is a singleton).
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Appendix: Fourier Analysis

The space of all functions f : {−1, 1}n → R is a linear space of dimension 2n. We can think of
functions as vectors with 2n coordinates, each corresponding to an element in {−1, 1}n. We can
equip our space with an inner product

< f, g >= E[fg] =
1

2n

∑
x∈{−1,1}n

f(x)g(x)

Now let S be a subset of [n] = {1, . . . , n}. Let uS : {−1, 1}n → R be the function defined by

uS(x) =
∏
i∈S

xi

One property of these functions is that uSuT = uS∆T where S∆T = (S\T )∪ (T\S). This is easy to
see because x2

i = x0
i = 1. So the terms xi which appear in both uS and uT vanish in the product.

Now using this property we know that

< uS , uT >= E[uSuT ] = E[uS∆T ] = E[
∏

i∈S∆T

xi] =
∏

i∈S∆T

E[xi]

Now if S∆T is nonempty, the above product is 0, because E[xi] = 0. If S∆T = ∅ then the above
product is 1. So we have

< uS , uT >=

{
1 S = T

0 S 6= T
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The set {uS |S ⊆ [n]} consists of 2n elements, which is equal to the dimension of the space. The
functions are orthonormal as we have shown, so they are linearly independent and form a basis for
the space. So each function f can be written as f(x) =

∑
S fSuS(x). Note that

< f, uS >=<
∑
T

fTuT , uS >= fS

so we have an easy way to express fS .

The inner product < f, g > of two functions can be written as

< f, g >=<
∑
S

fSuS ,
∑
T

gTuT >=
∑
S,T

fSgT < uS , uT >=
∑
S

fSgS

Particularly < f, f >= E[f2] =
∑
S f

2
S . So if f2 = 1 or in other words ∀x : f(x) ∈ {−1, 1}, we have∑

S f
2
S = 1.

One of the interesting applications of Fourier analysis is to express Infi(f). We will show that

Infi(f) =
∑
S3i

f2
S

This is true because if we consider the function g(x) = 1
2 [f(x)− f(x1, . . . ,−xi, . . . , xn)], then

g(x)2 = Varxi [f ]

because f takes values in {−1, 1} and so the Varxi is either 0 or 1. g(x) is in {−1, 0, 1} and it’s 0
exactly when Varxi is 0. Now note that

f(x1, . . . , xn) =
∑
S

fSuS(x)

so
f(x1, . . . ,−xi, . . . , xn) =

∑
S

fSuS(x1, . . . ,−xi, . . . , xn)

But it’s easy to see that uS(x1, . . . ,−xi, . . . , xn) equals uS(x) when i /∈ S and equals uS(x) when
i ∈ S. So

f(x1, . . . ,−xi, . . . , xn) =
∑
S 63i

fSuS(x)−
∑
S3i

fSuS(x)

Now it’s easy to see that

g(x) =
1

2

∑
S 63i

fSuS(x) +
∑
S3i

fSuS(x)

−
∑
S 63i

fSuS(x)−
∑
S 63i

fSuS(x)

 =
∑
S3i

fSuS(x)

Therefore
Infi(f) = E[Varxi

[f ]] = E[g2] =< g, g >=
∑
S

g2
S =

∑
S3i

f2
S

These are the tools we needed in the previous sections, but there is certainly more to Fourier analysis
than these facts.
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