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The GS theorem tells us that if a function F is neutral and non-manipulable, then it must be a dictator
function. Our goal in this lecture is to prove a quantitative version of the GS theorem.

Some notation and assumptions:
n voters
k alternatives denoted {A,B, ... K}
Each voter submits a ranking of his preferences
As social planners, we want a function where each voter is incentivized to reveal truthful preferences
M(F ) = all configurations of rankings where at least one voter can manipulate the result
Dk(n) = dictators on k alternatives and n voters
D(F,G) = P (F (σ) 6= G(σ)). D(F,Dk(n)) = min{D(F,G) : G ∈ Dk(n)}.

Consider people voting according to a random order uniformly in Sn
k . What is the probability that a

non-dictator function might be manipulable? The GS theorem gives us that ( 1
k!)

n ≤M(F ) (there is atleast
one σ manipulable by at least one voter).

Inspired by Arrow’s theorem, we might be interested in a result of the following flavor — If function F is
at least ε far away from the dictator function, then P(F is manipulable) > δ? The answer is no. Consider
the plurality function on k alternatives. Then,

P(σ: F is manipulable at σ) ≤ P(σ : ∃ i, j s.t. i, j appear at the top rank for an equal (upto ± 1, based
on tie break rule )number of voters) = O( 1√

n
)→ 0 as n→∞. Hence, we have ( 1

k!)
n ≤M(F ) ≤ O( 1√

n
).

A note: As the “social-planner” in this problem, we want (1) all voters to vote truthfully, and (2) we don’t
want a single voter to be able to manipulate the system. Do we care about this issue for real election
systems? Not really — the probabilities of manipulation by a single voter are too small. However, consider
a scenario where an aggregator is combining the results from Google, Yahoo, Bing and ... Ask.com(?) to
produce a master list of results to a particular query. In this case, we don’t want any individual voter (i.e.
search engine) to be able to manipulate the outcome of our system. This is really the scenario to have in
mind when thinking about these questions.

Theorem (Issakson-Kindler-Mossel 10:) If F is neutral and k ≥ 3, then M(F ) ≥ n−3k−10(D(F,Dk(n))2.
Moreover, the trivial random algorithm manipulates with probability at least n−3k−10(D(F,Dk(n))2.

Previous results have shown that manipulation in some situations can be hard (Bartholdi, Orlin 91 and
Bartholdi, Tovey, Trick 93). Also, there was a theorem (Friedgut-Kalai-Nisan 08): For k = 3 alternatives,
and neutral F , it holds that M(F ) ≥ n−1D(Fk(n), D)2. No computational consequences. They conjectured
that random manipulation could provide M(F ) ≥ poly(n, k)−1 and was easy on average.
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Proof: The proof of IKM-10 uses four (plus three) ideas. First, we define a graph representation of all
the voters and their possible voting preferences. The graph is such that we can construct paths between
edges of the graph that must hit manipulation points or pass close to manipulation points. Finally, we get
an estimate of the number of manipulation points by comparing the number of paths with the maximum
number of paths that may pass through any particular manipulation point.

1. Idea 1: The rankings graph

Consider a graph with edges and vertices as described here. Each vertex is the set of rankings on k
alternatives by all n voters, i.e., the vertex set is S(A,B, ...K)n. We define an edge e[x, x′] (on voter i)
if the rankings of all voters other than i stay the same at vertices x and x′, i.e., x(j) = x′(j) ∀ j 6= i.
Fix a voting function F . e[x, x′] is a boundary edge if F (x) 6= F (x′). We have three types of boundary
edges — monotone, monotone-neutral and anti-monotone. Recall that at any edge only one voter, say
voter i, changes ranking from x to x′.

Monotone: F (x) = A,F (x′) = B. x ranks A above B. x′ ranks B above A.
Monotone-neutral: F (x) = A,F (x′) = C. x and x′ have the same order for A,C.
Anti-monotone: F (x) = B,F (x′) = C. x ranks C above B. x′ ranks B above C.

Monotone-neutral and anti-monotone edges are manipulable. To see this, consider the monotone-
neutral setup and say voter i prefers A over C. Then he would want to vote according to x, even if x′

might represent his true preferences. Anti-monotone edges present a similar situation.

2. Idea 2: Isoperimetry

Assume we are only looking at four alternatives A,B,C,D.

Isoperimetric Lemma: If F is ε far from all dictators and neutral, then there exist voters i 6= j such
that P (e ∈ ∂i(A,B)) ≥ ε(6n)−2, P (e ∈ ∂j(C,D)) ≥ (6n)−2.

Proof sketch: If F is far from being a dictator, then there are at least two voters who can impact the
outcome. (If F we a dictator, only one voter would be able to affect the outcome.) Voter i changes
the outcome with P (εn−2). Voter j changes the outcome with P (εn−2).

3. Idea 3: Paths and Flows on ∂i(A,B)

Focus on a space of edges — say the boundary between the outcomes A and B. Note that an element
in this new space is an edge on the old graph. This is not a connected space, but we will define
walks on this space. This walks will be such that whenever the walks runs out of the space it hits a
manipulation point. Any time we get stuck, we will be able to show that we are close to a manipulation
point.

Walk rule: We can take a step from e[x, x′] (on voter i) to e[y, y′] (on voter i) if y differs from x only
in one voter, say j, and maintains the relative ranking for A and B at this voter. The same rule must
hold for x′ and y′ as well.

Lemma: If we reach a point along our walk where we can’t go any further, we must be close to a
manipulation point. Let [x, x′] ∈ ∂i(A,B), j ∈ n\{i}, y−j = x−j , y

′
−j = x′−j . yj , y

′
j have the same A,B

order as xj , x
′
j . Then, either [y′, y] ∈ ∂i(A,B) or ∃ a manipulation point identical to x except in at

most three voters (and thus, at most three steps away from x).

Proof idea: Let [y′, y] /∈ ∂i(A,B). If F (y) /∈ {A,B} then at this point F takes at least 3 values. We
can apply the GS theorem by fixing all voters except i, j, and conclude there exists a manipulation.
Alternatively, if F (y) ∈ {A,B}, then we can say without loss of generality that F (x) = F (y) = F (y′) =
A,F (y′) = B. Then [x′, y′] is a manipulation edge.
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4. Idea 4: Canonical paths

We start at an edge e[x, x′] ∈ ∂i(A,B), and choose as target an edge e′[y, y′] ∈ ∂j(C,D) and define a
canonical path, Γ{e, e′} between these edges along the ‘meta graph’. The path begins at e and ends
at e′. The path stays in ∂i(A,B) ∪ ∂j(C,D) or encounters a manipulation.

The example shows the evolution of one of the vertices (say x of e[x, x′]) in a sample canonical path
walk. We change the vertices one voter at a time while maintaining the A,B order for each voter,
until we hit a point (the fourth step in the example, ?), where we cannot proceed without changing
the A,B order. Similarly, we meet this point from the other direction.

START =

[
A C B
B D A
C A D
D B C

]
→

[
D C B
A D A
C A D
B B C

]
→

[
D C B
A A A
C D D
B B C

]
→

[
D C B
A A D
C D A
B B C

]
?
→

[
D C B
B A D
C D A
A B C

]
←

[
D C B
B A D
C D A
A B C

]
= TARGET

(The last two matrices in the example *are* equal, that isn’t a typo. It just so happens that in this
example the path in the reverse direction is of length one.)

Now, if this path does not encounter a manipulation along the way, then at the transition point
from ∂i(A,B) to ∂j(C,D), F takes at least three values, so the GS theorem implies there must be a
manipulation.

5. Counting the manipulation points - Are there enough?

Okay, great, so now we know how to hit manipulation points, or at least how to get close to them.
The next question is - are there enough such points? Or will all paths of the form described above
pass through the same manipulation points?

Let R = max
m

#{{e, e′} : m is a manipulation for Γ{e, e′}}.

Then, since |M(F )| ≥ R−1|∂i[A,B]× ∂j [C,D]|, we have that
P [M(F )] ≥ (4!)nR−1P [∂i[A,B]]× P [∂j [C,D]].

Now, given m, a point in a path on the ‘meta-graph’ — how many paths Γ{e, e′} could pass through
it? To prove our result, we want to “decode” ≤ poly(4!)n pairs (e, e′) such that Γ{e, e′} passes through
it. If e = [x, x′] and e′ = [y, y′], then it is enough to decode (x, y) from the point m, and pay k!2 for
the ambiguity in (x′, y′). For a coordianate s, given ms we know either xs or ys or we have 4!

2 options
for xs and 2 options for ys. So we only have poly(n, k) paths passing through each point m.

So P [M(F )] = (4!)nR−1P [∂i[A,B]]× P [∂j [C,D]] gives P [M(F )] ≥ ε2(6n)−5.

6. A bit of cheating...

In fact, we were cheating a bit in the previous analysis. We can only prove that along the path we
may hit a manipulation point or be close to (at most 3 steps away from) a manipulation point. So
we have R ≤ n4nk!3, which gives us P [M(F )] ≥ k!3ε2(6n)−5. This is fine for a constant number of
alternatives k, but doesn’t work for large k.

7. Idea 5: Geometries on the ranking cubes

We define a new graph with the same vertices as before. But now (x, x′) is an edge if x, x′ differ in a
single voter and an adjacent transposition. Further analysis with this graph can get us to the desired
polynomial factors.
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