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1 Overview

Today’s lecture is about ”fair” allocation of resources to agents. Several notions of fair-
ness could be defined. For example one could maximize the ”social welfare” which is the
sum of ”happiness” of each agent, or the ”happiness” of the most ”unhappy” person, or
proportionalness where every agent gets at least 1/k of the total according to their own
measure. We focus on the envy freeness which means every agent prefers his own allocation
over anyone else’s. Although envy free partitions are always possible when the goods are
divisible, it is not the case for indivisible goods. As an example consider the case where
there is only one good and many agents.

Empirically the notion of fair allocations was familiar to the ancient egyptians who
wanted to partition their land such that each would receive the same amount of irrigation.
Such partitions are also known as ”nile-partitions”. Mathematically this problem has been
studied by [Steinhaus, Banach, Knaster 48]. Others [3, 4] have looked at it from a game
theoretic perspective where the goal is a protocoal for a group of agents to arrive to a
”fair” allocation. As an example, consider the case where two agents are trying to allocate
a cake. In this case a protocol for achieving a fair allocation would be to let one cut the
cake the other choose.

In today’s lecture we focus on the computational complexity of this fair allocations
which minimize envy.

2 Discrete Envy Free Allocations

This setting consists of k agents and m indivisible goods. Also let uij be the utility of good
i for agent j. Let uiC be the utility of agent i for a subset C of goods. We consider the
case where the utility is additive, i.e. uiC =

∑
j∈C uij . Also denote a partition (allocation)

as the C1, C2, . . . , CK where Cj denotes the set of goods allocated to the agent j.
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The envy epq, denotes how much agent p envies agent q’s allocation and can be defined
in terms of the utility functions as :

epq = max(0, up,Cq − up,Cp) (1)

The envy of an allocation A is e(A) = maxp,q epq.
It turns out finding the allocation that minimizes envy is NP hard. We instead present

polynomial time algorithms which have upper bounds on the envy.

2.1 A bound in terms of atomicity

A useful parameter of the allocation problem is α := maxp,j up,j which is the maximum
utility of any good by any person.

Theorem [DallAglio - Hill 03][1]: There exists an allocation A with e(A) ≤ α(2k)3/2.

Theorem [Liption et al.][2] There is an polynomial time algorithm to compute an
allocation A such that e(A) ≤ α.

Proof Sketch: The proof is an algorithm for achieving an allocation with an envy ut-
most α. Consider the the envy-graph of an allocation which is a directed graph with an
edge i → j if i envies j. The algorithm is to repeat the following steps till all the goods
are allocated :

1. Find and eliminate all the directed cycles from the envy-graph.

2. Give the next good to an agent that no-one envies (any node with in-degree = 0).

The idea is that if a cycle exits in the envy graph one can eliminate the cycle by rotating
the allocations. One has to prove that this step does not introduce new cycles and the
process terminates. If B is the graph obtained from A by eliminating the cycles. We have
the following claims :

1. e(B) ≤ e(A)

2. envy-graph of B is acyclic (∃i with in-degree = 0).

The fact that e(B) ≤ e(A) is easy to see because removing any cycle only reduces the
envy of any agent. To see that the process terminates consider the overall utility

∑
i uiCi

(also called ”social welfare”). This quantity strictly goes up every time a cycle is eliminated.
Since this quantity is bounded, the process has to terminate after finite steps. Giving the
next good to the person that no one envies does not increase the envy of the allocation
either. Therefore one can achieve an envy of α using this procedure.
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To obtain bound on the number of steps taken by the algorithm we can analyze the
envy-graph. Notice that removing a cycle in the graph reduces the number of edges of the
envy graph by at least one. The number of edges from outside the cycle to nodes in the
cycle remain the same as the the allocations are just shifted by one, and is equivalent to
re-labeling the nodes. The number edges from nodes in the cycle to outside may go down
as the utility of the nodes go up which may cause some nodes to no longer envy others.
The number of edges in the cycle goes down by at least 1 after the rotation. Since there
are O(k2) edges, this process terminates in at most O(k2) steps. One can find a cycle in
the graph in O(k) steps using a breath first search and the overall algorithm terminates in
most O(mk3) steps.

3 Continuous Fair Allocations

In this setting for each partition A = A1, A2, . . . , Ak, each agent has a utility µi(Aj)
according to some measure µi. An allocation is fair if µi(Ai) ≥ µi(Aj). Its easy to see that
a fair allocation achieves µi(Ai) ≥ 1/k.

Let A = A1, A2, . . . , Ak be a partition and µ1, µ2, . . . , µk be measures. Denote M(µ,A)
for the matrix Mij = µi(Aj).

Theorem [Dubins and Spanier] [3] (proved using a theorem from [5]): For all non-
atomic µ1, µ2, . . . , µk on the same space the set M(u,A) where A runs over all partitions
is compact and convex.

One can partition A into ε small chunks, such that no chunk has utility greater than
ε and use the algorithm we proposed in the discrete case to to achieve an allocation with
envy at most ε. This with the compactness result implies that existence of fair allocations
for the continuous case.

References

[1] Marco Dall’Aglio and Theodore P. Hill. ”Maximin Share and Minimax Envy in Fair-
Division Problems” Journal of Mathematical Analysis and Applications 281.1 (2003):
346-361.

[2] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations
of indivisible goods. In Proceedings of the 5th ACM conference on Electronic commerce
(EC ’04). ACM, New York, NY, USA, 125-131.

[3] Dubins, L. E. and E. H. Spanier. 1961. How to cut a cake fairly. American Mathematical
Monthly 68(1):117.

3



[4] Steven J. Brams and Alan D. Taylor. An Envy-Free Cake Division Protocol .The Amer-
ican Mathematical Monthly, Vol. 102, No. 1, (Jan., 1995), pp. 9-18

[5] A. Lyapunov. Sur les fonctions-vecteurs compl?etement additives. Bulletin of the
Academy of Sciences of the USSR, 4:465478, 1940.

4


