STAT 206A: Polynomials of Random Variables 8

Lecture &
Lecture date: Oct 22 Scribe: Ron Peled

1 PAC-Learning

In this lecture we will introduce the concept of PAC(Probably Approximately Correct)-
Learning and give some basic properties of it. This concept was first defined and discussed
by Valient in the 70’s and 80’s.

To define the concept, let C' be a class of boolean valued functions on the domain €2, that
isC C{f:Q— {—1,1}}. This is the class we wish to learn.

Let H be (another) class of boolean valued functions on Q. H is called the hypothesis class,
we will approximate (in the sense to be defined) functions in C' by functions in H.

In the following we will also have § > 0 and ¢ > 0, in PAC, ¢ is related to Probably and €
is related to Approximately.

Definition 1 We say that an algorithm A PAC-learns the class C using hypothesis H if
Ve >0, § >0, feC, DeProb(Q)
1. A runs in time poly(sizeof(f),1/0,1/¢).
2. With prob. > 1—§ over the samples (X', f(X?));, where {X*} is chosen IID from D,
A outputs an h € H such that D[f(z) # h(z)] < e.

Where sizeof (f) is a measure of the complexity of f, for example, the number of boolean
operations in a small circuit which evaluates f.

In the sequel, when we discuss PAC-learning we will not always adhere to the polynomial
time restriction but instead try to estimate the minimal time required to approximate a

class C' (with some hypothesis class) in the above sense. When doing so, we shall often fix
some € or ¢ instead of working with all the possibilities for them.

2 PAC learning of the uniform distribution

In all that follows we will restrict ourselves to the following special context, we will take
Q={-1,1}" and D = U = the uniform distribution on {—1,1}".

8-1

Some special cases of PAC-learning are given names

1. Zero error learning : this is the case when e =0 and H = C.

2. a(n) weak learning : € = 1/2 — a(n) and a(n) = 1/poly(n).

3. Membership query (MQ) : When the algorithm is allowed to choose the {X*} (there
is no D and ¢ is taken to be 0).

We will discuss two approaches to PAC-learning, information theoretical and running time.
The information theoretical approach sometimes gives a lower bound for which it is very
difficult to find an algorithm. The next example illustrates this approach.

Example 2 C = {f:{-1,1}" — {-1,1}}.
Claim 3 For e =0 we need 2" queries under the membership query model.

Proof: Clearly, the given function may differ from the function our algorithm outputs on
the unevaluated inputs. O

Claim 4 For % > € > 0, we need at least C(€)2"™ queries under the membership query
model.

Proof: Fiz X', X2,...,X® the inputs seen. Then the algorithm can output at most 2°
functions. Let B = {set of all possible output functions}.

Define, for a function f, B.(f) ={g | Ulf # g] < €}. We can only learn the functions in
UreBBe(f), hence (since for any f we have |Be(f)| = |Be(0)|) we need to have 2°| B¢(0)| >
22", But since

Lemma 5 |B.(0)] < 2(1-C()2"
The claim follows. O

Ezxercise 6 (1 Point) Prove the lemma, deduce that you cannot weakly learn all functions

(for any a(n)).

Exercise 7 (1 Point) Show that the class of all monotone functions has size double expo-
nential.

8-2

Proposition 8 The set of all monotone functions is - weakly learnable for some constant
¢ (and some H).

Proof: Take H = {1,—1,xz1,23,...,2,}. Divide into cases

a

1. Easy case, when f is not balanced. Take

1000” queries, if Bf € [— % %] then output

sgn(Ef). By large deviations, if Ef € [— 16,16] then wp.>1—d Ef € [— 1, %]. And
also if Ef ¢ [—1, 1] then w.p.>1—6 Bf ¢ [— 1,3 andsgn(Ef)—sgn(Ef)

This shows that when f is so unbalanced that Ef ¢ [—1, 1] then the above algorithm
performs as required, on the other hand, if f is relatively balanced so that Ef €
[— 116, 16] then the above case W111 w.p. > 1 — 6 not be picked by the algorithm. In
the remaining case Ef € ([—1 I 116) U (116, 4] it doesn’t matter if the above case is

executed by the algorithm, or the next case.

. When Ef € [-1, 1] we get by Harper’s inequality that 3 I;(f) > 1 (we actually get

101
something even better from the inequality). Hence there exists ¢ with [;(f) > %

Since for monotone functions the {i}’th Fourier coefficient equals the i’th influence it
follows that P(f(z) # z;) < 3 — L, so our algorithm would perform well if it outputs
h = z; in this case. We will actually not neccessarily output this x;, but the x; we do
output will also work well for us as detailed in the following.

Take g—: samples and estimate for each j, P(f(x) = z;). If found j s.t. P(f(z) =
xj) > %4— % then output h = z;. By another large deviation calculation, w.p. > 1—9
we will find a j for which P(f(z) = x;) > 3 + 4= and hence the algorithm works with
constant ¢ = i in this case.

Proposition 9 The set of all monotone functions can be learned in time %20(\/"7[09(”)/5).

The proof will be given in the next lecture.

8-3

