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Lecture 0
Lecture date: October 25 Scribe: Asaf Nachmias

Consider finite probability spaces Qy,...,€),, with measures uq, ..., t,. Let a; be size of
the smallest atom of (Q;,p;), and set & = min; ;. Let f € L*([], ;) be a real function.

Theorem 1 (Generalizaion of Talagrand, 1994) There exists some universal constant

C such that N
var(f) < Clog(1/a) 1102 .
2o (112fll2/112:f110)

Corollary 2 (Kahn, Kalai and Linial, 1988) Consider f : {0,1}" — {0,1}, where
{0,1}" is endowed with the uniform measure, then there exists a constant C > 0 such
that

max I;(f) > Cvar(f)lo% .

Proof: [of Corollary 2] Recall that ||A;f||3 = I;(f), and that x/log(1/x) is increasing
on (0,1). By the identity A;f = f — E[f | Xj, j # i], it is easy to check that that
[|1Aif|l1 = Li(f). So by Theorem 1 we get

max; I;(f)
Cvar(f) < ni s L(1))

and since y/log(1/y) > = implies y > Kx/log(1/z) for some constant K for all € (0,1/2),
we get the result. O

Remark 3 Similarly we can prove that for all p € (0,1) there ezists a constant C), such
that if f:{0,1}" — {0, 1}, where {0,1}" is endowed with the Bin(n,p) measure, then

mZaXIZ-(f) > vaar(f)loin .

Proof: [of Theorem 1] For a real function g from our space, denote

a2
M(g) =) g(S|) :

S:eS |S
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So

var(f) = Z f(S)2 = ZM2(Aif)7

S#0 i<n

and hence it suffices to prove that for any function g with Eg = 0,

M?(g) < K log(1/a) lolz : (1)
tog (llgll2/ gl )

To prove (1) we use hypercontractivity. The following proposition is proved in the end of
this note.

Proposition 4 Let g € (1,2) and © € (0,1) satisfies

0> < —(¢—1),

w‘QM

then for all functions g we have,
1 Togll2 < lgllq

where Tg is the Bonami-Beckner operator.

Recall that

Tog=>»_0°1§(S)Us
S

a

and apply the previous with ¢ = 3/2, and 62 = % This gives that for any integer k > 0,
C& Z 2 < 292‘5‘ = ||T®9|’2 < H9||3/27
IS|=k

hence

> a9 < (%) lalie.
|S|=k

Fix an integer m > 0, and sum the previous for all £ < m to get

4 Z< 2 HgHg/Q_Q(i)

|S|<m ’ | k<m

HgH%/Za

where the last inequality comes from the fact that the ratio between two consecutive sum-
mands in the sum is greater than 2. We now have

2( 5 " 2
wig) = ¥ SR 3 A8 ) ol + 121

g m
[S|<m |S|>m
2 6 \m 9 9

< _ ) .

< =[(5) sl + HgHQ] @)
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We now choose optimal m. Choose largest m such that (a2> ||g|]§/2 < ||9//3, hence

210g (lgll2/Ilgl13/2)
log(6/a?) '

6 \m+1 5 )
(@) lgllz /2 > llglls = m+1>

Plugging this back into (2) gives

log(6/a?)|lg|l3

M?*(g) <C :
tog ((lgll2/11g1ls2)

An application of Cauchy-Schwartz gives

91132 < llgllllgll3,

hence

3
(|’9H3/2) < gl 7
llgll2 [lgll2
which concludes the proof of (1) and so we are done. O

Let A C {0,1}" be a monotone increasing set. Let i, be the Bin(n, p) measure on {0,1}".
Note that since A is increasing, p,(A) is an increasing function in p. Moreover, it is a
polynomial and in particular it is infinitely differentiable.

Lemma 5 (Russo’s Lemma)

6MP(A) Zign Ii(p) (A)
Ip p(1—-p)

Proof: Let ¢(p1,p2,...,pn) : [0,1]" — [0,1] be a function returning the measure of A in
the space L2<Hi p; ) where p; is a measure on the two point space {0,1} which gives 1
weight p; and gives 0 weight 1 — p;. The clearly p,(A) = ¢(p,...,p), so by the chain rule

aup <« MW
Z =2 p(1—p)’

i<n i<n

8101

where the last equality is due to the easy fact

d 1PA
Ip; p(1—p)

a

A graph property P on n vertices is a set of graphs on n vertices which is invariant un-
der vertex permutations. The following theorem states that any graph property which is
monotone experiences a ’sharp threshold’.
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Theorem 6 (Friedgut and Kalai, 1996) Let P be a monotone increasing graph prop-
erty on n vertices. If p € (0,1) is such that p,(P) > €, then

:U’Q(P)>]'_67

log(L+ . .
forq=p+c f’f;;), where ¢1 > 0 is a universal constant.

Proof: Invariance under vertex permutation gives that all influences of the indicator func-
tion of A are equal (note the edges of graph are the variables of the function). Hence by
Theorem 1 and Remark 3 we have that

ZI ) = Crp(A)(1 = pp(A))logn.

For any r > p such that p,(A) < 1/2, by Lemma 5 and the previous line we have that

Opr (A)

5, = Cur(A)logn,

where we consider p to be fixed (and hence so is 1/p). Last equation can be written as

Olog(ur(A))

o > Clogn,

1
and so if we take ¢ = p + 01(()26) we get by the fundamental theorem of calculus that

(g (4)) > Tog(y(4)) + [ Clogn > log(e) +log() = log(1/2).

And so pg(A) > 1/2. Similarly, if we take ¢ = ¢’ + Clg 72 we get that pg(A) > 1 —e.

a

Proof: [of Proposition 4] We have learned that the hypercontractive constant for the space

L? ( IL ui) is

- (1- a)2—2/q — o2 2/a 1/2
@(Q) - ((1 _ Ck)Oél_Q/q _ a(l _ 06)1_2/(1) ’

for all ¢ € (1,2). Thus in order to prove the claim, we just need to lower bound ©(q). Let
fla) =220, gla) = ~(1 - 2)a 2,

and by Lagrange’s theorem we have

s f'(&)
o0 = g(&)’
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for some &1,& € (a,1 — «). By computing, one can check that f’ and ¢’ are decreasing,
and hence

(1 —a) (2—-2/¢)(1 — a)l—Q/q
@(9)2 J(a) - al—2/a 4 (2/q — 1)a—2/q(1 —a)
o 2(q—1) /1 — a2/ 1—a (¢ —1)a2
- ) e a2

0-5



