STAT 206A: Polynomials of Random Variables 14

Lecture 14
Lecture date: Oct 18 Scribe: Constantinos Daskalakis

1 Hyper-Contraction for Sets of Random Variables

Let X = {X1,..., Xy}, where X;,..., X} are random variables with of whose moments are
finite. Denote by P,,(X) and P(X') the following sets

Pn(X) = {all polynomials of degree < n in variables from X'}
P(X) = {all polynomials in variables from X'}

Finally, let T;, : P(xz) — P(x), where n € (0,1), be the linear operator satisfying the
following property
T,Y =n"Y if Y € Pp(X) NP1 (X)

Definition 1 Suppose 1 <p<qg<oo and0<n<1. We say that X is (p,q,n) hypercon-
tractive if for all polynomials Q € P(X) the following is satisfied:

IT,Q(X) g < 1R(X)l,

Remark 2 The following are easy observations:

o If{1,X1,..., X} is a standard basis for L*>(p), for some measure p, then for every
X:
T,X =nX + (1 —n)E[X]

(to see why write X = (X — E[X]) + E[X] and note that the two summands are
orthogonal, the first summand is a degree 1 polynomial in X1,..., Xy and the second
summand a degree 0 polynomial)

o If{1,X{,...,X}} is a standard basis for L*(u1) and {1, X?,...,X}?} a standard basis
for L*(p2), for some measures 1 and p2, and X = {X{,..., X}, X}, ..., X}?} then:

P(X) = @L (1)

and T}, 1s the Bonami-Beckner operator

Claim 3 If X = {X1,Xo,..., X} and Y = {Y1,Ys,...,Y,} are two (p,q,n) hypercontrac-
tive sets of random variables that are independent, then so is X U ).
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Proof: Let @ be a polynomial in X and ). We can write ) as follows:

QX UY) = ZRi(X)Si(y)

and therefore:

IT,Q(X UY)lg = [T Q(X U V)| La)ll Lo (Fubini’s theorem)
= || Tny (Z TmX(Ri(X)Si(y)))
i La) |l La(x)

< Z Tyx(Ri(X)S;:(Y)) (hypercontractivity of ))
i LP) |l La(x)

< | Tn.x R;(X)S; (Y generalized Minkowski inequality (p < ¢
,,77

' La() [ e ()

< Z R;i(X)Si(Y) (hypercontractivity of X')
' LX) llLe(y)

=[x V),

a

Claim 4 Let X be a (2,q,n) hypercontractive set of random variables and Q a polynomial
of degree < d on X. Then [Q(X)]ly < 14| Q).

Proof: We distinguish the following cases:

o if Q(X) € Py(X)NP7 ,(X), then T,,Q(X) = n?Q(X) and so, by the hypercontractivity
of X, it follows that:

I Q(X) g = IT,Q(X) I < Q()]l2
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e in general, Q = Zfzo Qi(X), where Q; € P;(X)NPit, (&), and so

d
1Q(X) g = || T, (Z nin—(X)>
1=0

q

d
<D onrQix)
=0 2
d 1
= (Z n QX ||2> (because Q; LQ; for all i # j)
=0
d 3
< (Zn 24)1Q4( )\%) (because n < 1)
=0
<Z 1Qs (X H2>
=1""Qll2

Exercise 5 (Gross ’68) (2pts) Prove that the Orenstein-Uhlenbech operator Ty, is (p, q,n)
hypercontractive for all (p,q,n) for which {—1,1}¢ is (p,q,n) hypercontractive. Recall that
the Orenstein-Uhlenbech operator T, : L*(,) — L?(vy) is defined as follows:

(T)(@) = Eymn, | £ (n2+ V1= 1) |

2 Central Limit Theorem and Generalizations

Exercise 6 (1 pt) Let N = (N1,Na,...,Ni) be a Gaussian vector and f(N) a degree d
polynomial. Show that there exists a sequence {f,}, where, for all n, f, is a multilinear
polynomial on {—1,1}13% which converges in distribution to f(N) as n — oc.

Theorem 7 (approach due to Linderberg) Let g € (2,3], 5 < oo, and let Xq,..., X,
be independent random variables satisfying E[X;] =0, E[X?] =1, HX |7] < B < c0. Also,

let
QX1 Xn)= > (Csl_[Xi>

SCln] 1€S
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be a multi-linear polynomial of degree d satisfying ZS#@ ¢z =1. Then, if A: R — [0,1]
is mon-decreasing with A(0) = 0, A(1) = 1, A = sup |A®)(z)| < 00, A, (z) = A(%), the
following holds:

q/2
B [A(Q(X1, Xa, .., X)) = E[AN(Q(G, .., Gu))I| S A-Og [ r7987 > < > c§>

) S:eS

where G1,Go, ..., G, are independent Gaussian random variables and the constant hidden

in the O notation of the right hand side depends on q.

The reason why the above theorem can be seen as a generalization of the central limit
theorem is that, as function A(-) approaches the step function H(z) = $[1+sign(z—1)], the
expectation E [A,(Q(X1, X2, ..., X,))] approaches the probability P[Q(X1, Xs,...,X,) >
r] and, similarly, E [A(Q(G1,...,Gy))] approaches P[Q(G1,...,Gy) > r]. We will see the
proof of the theorem in the next lecture. For now, we state and prove the following lemma.

Lemma 8 Let q € (2,3] and Y, Z be random variables satisfying:

o E[Y] = E[Z]
o E[Y?] =E[Z%], E[|Y |7, E[|Z]] < o
Then for all
[E[A (2 +Y)] - E[A(z + 2)]| < Ar™ (B[Y*] + E[| 2]7])

where A,(+) is the function defined in the statement of theorem 7.

Proof: Since A”(07) =0, A”(17) = 0 and A”() is continuous it follows that A”(0) = 0
and A”(1) = 0. Hence

v A

sup |A"(z)| = sup / A’”(t)dt‘ < —
0<z<1/2 o<z<1/21Jo 2
" * n A

sup |A"(z)| = sup / A (t)dt‘ < —
1/2<z<1 1/2<z<11J1 2

and so, trivially,

sup {A"(m)‘ < g
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Therefore, for all z,y € R:

8) - &) = 4[5 - 2

A A
" " q—2
A A
A A
— Aqu ‘A//(x) _ AII(y)‘Q*Q
T q—2
= A3-4 / A" (t)dt
Yy
< A0 (Al — )
< Az —y|72

This implies the following

240 - Al = [ () o (] < 7 - 1 < Ao -

7r2 r

Now, if we denote by ¢(v) = E[A,(z +vY)] — E[Aq(z +vZ)], 0 < v < 1, we have:

p(0)=0
o' (v) =E[YAL(x +0Y)] — E[ZAl(x + vZ)]

#(0) = E[YAL(x)] — E[ZA)(x)] = 0
o o' (v) =E[Y2A(z +vY)] — E[Z2A (z + vZ)]

Therefore, we can write

" (v)] = [E[Y*(A] (2 +0Y) — Al(2))] = E[Z*(A]( +0Z) — Al (2))]
<E[|Y*(A(z+vY) = Al2)|] + E [|Z*(A)(z + vZ) — Al(2))]|]
< Ar79 (B [Y?Y|[97?] + E[Z%[vZ|"?]) =
< Arm T2 (E[[Y |9 + E[|2]9)

After integrating twice with respect to v and plugging in v = 1, we get

lp(D)] < Ar~ 9 (E[Y]] + E[|2]%) .
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