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Lecture 13
Lecture date: Oct 11 Scribe: Peter Ralph

notation: Where the definition of 1 is clear from context, we let |f|,; = (f |f(:c)|qu(d:6))1/q
denote the L4(p) norm. Similiarly, let (f,g) = (f,9), = >_ f(x)g(x)pu(dx) denote the inner
product of L?(u).

Theorem 1 For all p < 2 < q, any discrete probability measure . whose smallest atom
is of size a has the same (2,q)— and (p, 2)—hypercontractivity constants as the measure [y,
that assigns mass o and 1 — o to 0 and 1, respectively.

Proof:

We will prove the result for the (2, ¢)-hypercontractivity contants, and the (p,2) case will
follow by duality.

It is easy to show that if u is (2, ¢,n)-hypercontractive, then so is p,. Indeed, suppose
otherwise. Then by definition, there exists an f : {0,1} — R such that [T}, f|ra(.,) >
|f|22(uq)» Where T}, is the Bonami-Bechner operator. Let x be such that u(z) = a. If we
then define g : R — R by

_ f0) ify==x
9(v) {f(l) o.W. ,

then we see that |g|rr() = |flor(ue) and |Thglreuy = 1Ty flr(us) for all p. However, by
(2, ¢, n)-hypercontractivity of u, |T;g|r2(,y < |9|12(4), which is a contradiction.

To show the converse, we will prove the following. Suppose that p is not (2,q,7n)-
hypercontractive, and let fy maximize |T; f|; among {f : [f|]o = 1}. We will show that
fo obtains at most (and hence exactly) two values. This will complete the proof of the
theorem, since an fo taking two values induces a two-point measure pg on those values that
is not (2, ¢, n)-hypercontractive. Since 3 > «, and the hypercontractivity constants for s
are monotone in vy, we have that p, is not (2, ¢, n)-hypercontractive either.

Exercise 2 (1 point) Show that the hypercontractive constants for p, is monotone in .

The proof of the size of the range of fy is as follows. Let I(f) = |T,f|4,
and J(f) = |fl3> We wish to use the method of Lagrange multipliers (see
www.wikipedia.org/wiki/Lagrange_Multiplier for background), to which end we will think
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of I and J as acting on the finite-dimensional real vector space of functions f : spt(u) — R.
Note that any linear function on this space can be represented uniquely as (f,-), for
some appropriate f, so we may write the derivate of, say, I, evaluated at a function g,
as DI(g) = (f(g9),)u, for some f depending on g.

By the method of Lagrange multipliers, DI(fy) = c¢DJ(fy), for some constant c¢. Simple
computation reveals that DJ(f) = 2(f,-),, and the chain rule allows us to also compute

DI(fo) = <Q(Tnf0>q_17Tn'>u
= q77<T77(T77f0)q_1a Vs
since (DT),))f = T, (here D is the derivative from R” — R"), and T, is self-adjoint with

respect to (-, -),. Since DI(fo) = ¢DJ(fo), by uniqueness, we have that fo = CT, (T, fo)?*
for some constant C'.

Let go = T, fo + (1 — n)E(fo), and note that

1 1—n
= Zgo— —E(go), 1
fo 7790 ” (90) (1)
and also that
fo=CTygy™" = Clngd™" + (1 —mE(g ). (2)

However, note that for each z, the first equation (1) is linear in go(z), while the second
equation (2) is strictly convex in go(z). A linear function meets a strictly convex function
in at most two points, so there are at most two solutions (go(x), fo(x)) to (1) = (2), and fy
takes at most two values.

a

Now we move on to the notion of hypercontractivity of random variables taking values in a
separable Banach space (e.g. R™ with any of the usual norms), and relate it to our previous
definition.

Throughout, we will denote by |- | the norm coming from the Banach space, and define a
family of norms | - ||, on random variables in this Banach space by ||Y]|, := (E[Y|7)!/9.

Definition 3 A random variable X taking values in a separable Banach space V' is (p,q,0)—
hypercontractive for some 0 < p < q and 0 < o < 1 if, for allv eV,

lo+oX|lg < [lv+X]lp.

Theorem 4 For a finite probability space (0, F,P), the following are equivalent:

o T, is (p, q)~hypercontractive.
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o Fvery mean—zero random variable X taking values in a separable Banach space is
(p, q,m)~hypercontractive.

e FEvery mean—zero real—valued random variable X is (p, q,n)—hypercontractive.

Proof: Trivially, B = C.

(C = A) Assume C, and let g = f — Ef, so that by letting v = Ef and X = ng, we have
T, flq = [Ef +n9lqy < |[Ef + glp = |flp- This shows A.

(A = B) By the triangle inequality, the function f(x) := |v+z| is convex, so using Jensen’s
inequality twice and that EX = 0,

Tof(X) =nf(X)+ (1 -nEf(X)
> nf(X)+ (1 —n)f(EX)
=nf(X)+ (1 -n)f(0)
> f(nX),
and hence
v+ nXllg = [If(X)llqg < Thf(X)llg < [[F(X)lp = v+ X]lp.
Od

Exercise 5 (1 point) Prove this lemma:

Lemma 6 Let ¢ > 2,1n >0, and let X be a (2, q,n)-hypercontractive random variable such
that X #0. Then EX =0, E|X|? < oo, and n < (¢ — 1)~ /2.

The following lemma relates (p,q,n)-hypercontractivity of a random variable X to its’
moments.

Lemma 7 Let X be a mean-zero real-valued random variable with E| X |1 < oo, where ¢ > 2.
Then X is (2, q,nq) -hypercontractive, where

I .
T Ve=T1X |
Proof:

Let X’ be an independent copy of X, and let Y = X — X'/, so that Y is symmetric. Let €
be a further independent random variable taking values {+1, —1} with probability % each.
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Note that [|Y||; < 2|/ X||q by the triangle inequality, and that Y =4 €Y. We also know that
€ is (2,¢,1/+/q — 1)-hypercontractive.

The idea of this proof (symmetrization of X and using the hypercontractivity of €) is due
to Talagrand.

By Jensen’s inequality, averaging over the value of X’ and using EX’ = 0,

lla + UqXHq < la+ 77qY||q = lla + anYHq-

”

Using hypercontractivity of €, and where “Ez
conditioning on everything else),

means taking the expectation over Z (and

2 q/2 1/a
a—l—nqu\/q—l‘) ])

la +mgeY [lg < <EY

1
_ (E [\aQ + 2y (g - 1)}q/2D &
= [l +n2Y2(q - V)25

1/2
< (a4 (g = D2IY?]lg2)"

IVl \ g2

2 q 2

=|a“+ EX ,

( (et )

where the second inequality follows from Minkowski’s inequality. Using the definition of 7,
and that ||Y||; < 2||X ||, we continue the above chain of inequalities to get that

la+ X, < (a® + Ex?)"?
= Jla+ X2,

where the last equality follows from EX = 0. O
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