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Tossing coins from cosmic source
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y1 01010001011011011111

y2 01010001011011011111

y3 01010001011011011111
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yk 01010001011011011111
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Broadcast with ε errors

Alice

Bob

Cindy

Kate

x 01010001011011011111 (n bits)

y1 01011000011011011111

y2 01010001011110011011

y3 11010001011010011111
° ° °

yk 01010011011001010111
o o o
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Broadcast with ε errors

Alice

Bob

Cindy

Kate

x 01010001011011011111 (n bits)

y1 01011000011011011111

y2 01010001011110011011

y3 11010001011010011111
° ° °

yk 01010011011001010111
o o o
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The parameters
n bit uniform random “source” string x
k parties who cannot communicate, but wish to 

agree on a uniformly random bit
ε each party gets an independently

corrupted version yi, each bit flipped
independently with probability ε

f (or f1… fk): balanced “protocol” functions

Our goal
For each n, k, ε, 

find the best protocol function f (or functions f1…fk) 
which maximize the probability that all parties agree 

on the same bit.
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Our goal
For each n, k, ε, 

find the best protocol function f (or functions f1…fk) 
which maximize the probability that all parties agree 

on the same bit.

Coins and voting schemes

• For k=2 we want to maximize P[f1(y1) = f2(y2)], where 
y1 and y2 are related by applying ε noise twice.

• Optimal protocol: f1 = f2 = dictatorship.
• Same is true for k=3 (M-O’Donnell).
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Proof that optimality is achieved at f1=f2=x1

• We want to maximize E[f1Tηf2] for η=1-2ε. But 

• By Cauchy-Schwartz 

• Equality is trivially achieved for f1=f2=x1
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Proof that optimality is achieved for f1=f2=f3=x1

• For 3 functions, disagreement means that two agree and the third
disagrees. Therefore:

• Now each term in the sum above can be maximized independently.
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Notation
We write:

S(f1, …, fk; ε)   =    Pr[f1(y1) = ··· = fk(yk)],
Sk(f; ε) in the case f = f1 = ··· = fk.

Further motivation

• Noise in “Ever-lasting security” crypto protocols 
(Ding and Rabin).

• Variant of a decoding problem. 
• Study of noise sensitivity:  |Tε(f)|k

k where Tε is the 
Bonami-Beckner operator. 
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protocols
• Recall that we want the parties’ bits, when agreed 

upon, to be uniformly random.
• To get this, we restricted to balanced functions. 
• However this is neither necessary nor sufficient!
• In particular, for n = 5 and k = 3, there is a balanced 

function f such that, if all players use f, they are 
more likely to agree on 1 than on 0!.

• To get agreed-upon bits to be uniform, it suffices for 
functions be antisymmetric:

• Thm[M-O’Donnell]: In optimal f1 = … = fk = f and f is 
monotone (Pf uses convexity and symmetrization).

• We are thus in the same setting as in the voting case.
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Proof of M-O’Donnell Theorem

• Claim 1: in optimal protocol, f1=f2=…=fk=f.
• Proof: Let f1,f2…fM be all the possible functions, where M=22n. Let 

t1,t2…tM be the numbers of players using each function. Then 

• But for each value of x, 0<Tfi(x)<1, and therefore for each value of x, 
the both terms above are convex. Therefore the expectation of the 
sum is also convex in (t1,…tM). Which implies that the optimum is 
achieved at (k,0,0,…0).
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Proof of M-O’Donnell Theorem (continued)

• Claim 2: Optimum is achieved when f is monotone.
• Proof: We will use the technique of shifting (as in the proof of

the isoperimetric inequality).
• If f(0,x2,…xn)= f(1,x2,…xn), then set g(0,x2,…xn)= g(1,x2,…xn)= 

f(0,x2,…xn)= f(1,x2,…xn). If f(0,x2,…xn)= f(1,x2,…xn), then set 
g(0,x2,…xn)= 0 and g(1,x2,…xn)= 1.

• Subclaim: g is “better” than f, even if conditioned on the values 
of (yj

i) for j≥2 and 1≤i≤k.
• Proof of subclaim: Suppose a functions are identically 0, b are 

identically 1 and c are non-trivial (having fixed the (yj
i)’s). If 

both a,b>0, agreement is with probability 0. 
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Proof of M-O’Donnell Theorem (continued)

• Suppose a=b=0. Let c=cup+cdown, where cup is the number of increasing 
functions and cdown is the number of decreasing functions. Then the 
probability of agreement for f is

• On the other hand, the probability of agreement for g is 

and Pagree
g> Pagree

f by convexity.

• For a>0 and b=0 or vice-versa the analysis is identical save for a 
factor of ½.■
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More results [M-O’Donnell]
• When k = 2 or 3, the first-bit function is best.
• For fixed n, when k→∞ majority is best.
• For fixed n and k when ε→0 and ε→½, the first-bit is 

best.
– Proof for ε→0 uses isoperimetric inq for edge boundary.
– Proof for ε→ ½ uses Fourier.

• For unbounded n, things get harder… in general we 
don’t know the best function, but we can give bounds 
for Sk(f; ε).

• Main open problem for finite n (odd): Is optimal 
protocol always a majority of a subset?

• Conjecture M: No
• Conjecture O: Yes.
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For fixed n and ε, when k→∞ majority is best

• Proof: We have seen that in the optimal case all the f’s are equal and 
monotone. Then 

• But when k→∞, we only care about the dominant term, i.e. (Tf(1))k+(1-Tf(0))k. 
(Tf is monotone when f is monotone.)

• We are therefore trying to maximize the following quantity over f

• But ε≤1/2, therefore maximization is achieved when one picks the top half of 
the distribution, i.e. majority. ■
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Unbounded n

• Fixing ε and n = ∞, how does h(k,ε) := P[f1 = … = fk] 
decay as a function of k?

• First guess: h(k,ε) decays exponentially with k.
• But!
• Prop[M-O’Donnell]: h(k,ε) ≥ k-c(ε) where c(ε) > 0.
• Conj[M-O’Donnell]: h(k,ε) → 0 as k →∞.

• Thm[M-O’Donnell-Regev-Steif-Sudakov]: h(k,ε) · k-c’(ε)
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Harmonic analysis of Boolean functions

• To prove “hard” results need to do harmonic analysis 
of Boolean functions. 

• Consists of many combinatorial and probabilistic tricks 
+ “Hyper-contractivity”.

• If p-1=η2(q-1) then
• |Tη f|q · |f|p if p > 1 (Bonami-Beckner)
• |Tη f|q ≥ |f|p if p < 1 and f > 0 (Borell).
• Our application uses 2nd – in particular implies that for 

all A and B: P[x ∈ A, Nε(x) ∈ B] ≥ P(A)1/p P(B)q.

• Similar inequalities hold for Ornstein-Uhlenbeck
processes and “whenever” there is a log-sob inequality. 
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Coins on other trees

• We can define the coin problem on trees.
• So far we have only discusses the star.

x

Y1

Y2
Y3

Y4

x=y1 Y2 Y3 Y4 Y5

x

Y2
Y1

Y3

Y4

Y5

• Some highlights from MORSS:
• On line dictator is always optimal (new result in MCs).
• For some trees, different fi’s needed.
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Wrap-up
• We have seen a variety of “stability” problems for 

voting and coins tossing.
• Sometimes it is “easy” to show that dictator is optimal. 
• Sometimes majority is (almost) optimal, but typically 

hard to prove (why?).
• Recursive majority is really (the most) unstable. 
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Open problems

1. Does f monotone anti-symmetric, µ FKG and           
µ[Xi] = p > ½, ei < δ ⇒            µ[f] ≥ 1 - ε? 

2. For µ the i.i.d. measure the (almost) most stable f
with ei = o(1) is maj (for k=2? All k?).

3. The most stable f for Gaussian coin problem is f(x) = 
sign(x) and result is robust.

4. For the coin problem, the optimal f is always a 
majority of a subset.


