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Abstract

In the cyclic-to-random shuffle, we are given n cards ar-
ranged in a circle. At step k, we exchange the k’th card
along the circle with a uniformly chosen random card.
The problem of determining the mixing time of the cyclic-
to-random shuffle was raised by Aldous and Diaconis in
1986. Recently, Mironov used this shuffle as a model for the
cryptographic system known as RC4, and proved an upper
bound of O(n log n) for the mixing time. We prove a match-
ing lower bound, thus establishing that the mixing time is in-
deed of order Θ(n logn). We also prove an upper bound of
O(n logn) for the mixing time of any “semi-random trans-
position shuffle”, i.e., any shuffle in which a random card
is exchanged with another card chosen according to an ar-
bitrary (deterministic or random) rule. To prove our lower
bound, we exhibit an explicit complex-valued test function
which typically takes very different values for permutations
arising from few iterations of the cyclic-to-random-shuffle
and for uniform random permutations. Perhaps surpris-
ingly, the proof hinges on the fact that the function ez − 1
has nonzero fixed points in the complex plane. A key insight
from our work is the importance of complex analysis tools
for uncovering structure in nonreversible Markov chains.

1. Introduction

The mixing time of a Markov chain on a finite state
space is the number of steps until it is close to its station-
ary distribution, starting from an arbitrary state. The mixing
time is a key parameter in analyzing random sampling algo-
rithms and is of intrinsic interest in probability and statisti-
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cal physics. For many natural Markov chains, if some of the
randomness is removed from the transition rule, resulting
in a “more deterministic” process with the same stationary
distribution, the chain becomes significantly harder to ana-
lyze. Indeed, some of the most challenging problems in the
field concern the analysis of such “pseudo-random” variants
of well understood chains. Some examples include the rif-
fle shuffle [13, 18] compared to the Thorp shuffle [19], the
asymmetric exclusion process [6] compared with its sys-
tematic scan version [10], and the comparison between the
standard and systematic scan versions of Glauber dynam-
ics for Gaussian fields [14, 4] and for spin systems [12].

Shuffling by random transpositions is one of the simplest
random walks on the symmetric group: given n cards in
a row, at each step two cards are picked uniformly at ran-
dom and exchanged. This shuffle was precisely analyzed in
1981 [11]. In the “cyclic-to-random” shuffle (invented by
Thorp [20]), at step t a uniformly chosen random card is
exchanged with the card at position t mod n. It is easy to
see that this semi-random shuffle still converges to the uni-
form distribution on permutations of n cards. In their land-
mark 1986 paper on card shuffling [3], Aldous and Diaco-
nis posed as a challenge the analysis of the cyclic-to-random
shuffle. More recently, Mironov [16] related this shuffle to
the behavior of the cryptographic system RC4 – see Sec-
tion 4 for a brief discussion of this connection. Mironov
showed that a strong uniform time argument due to Broder
(as described in [9]) can be adapted to yield an upper bound
of O(n logn) on the mixing time of the cyclic-to-random-
shuffle. He posed as an open problem whether this bound is
tight, and discussed the relevance of such an analysis of the
cyclic-to-random shuffle to potential vulnerabilities in RC4.

In this paper we establish a lower bound of Ω(n logn)
for the mixing time of the cyclic-to-random shuffle, thus
answering the questions posed by Aldous and Diaconis
and by Mironov. We also prove a general upper bound of
O(n logn) on the mixing time of any semi-random trans-
position shuffle, i.e., any shuffle in which a random card is
exchanged with another card chosen according to an arbi-
trary (deterministic or random) rule that may vary at each



step. Previously, the best available upper bound for such a
general process was O(n2), proved by Pak [17].

To prove the lower bound for the cyclic-to-random shuf-
fle {σt}, we find an eigenfunction F of the shuffle that
mixes slowly. First, we determine the eigenvalues of a non-
reversible renewal Markov chain M on the n-cycle which
describes the behavior of a single card. The asymptotics
for the leading eigenvalues of M depend on the fact that
the function ez − 1 has nonzero fixed points in the com-
plex plane. We then pick an eigenfunction f for M and use
it to construct a test function F , defined on permutations,
which is a weighted sum of f applied to the locations of
all cards. To show that the distribution at time t of F (σt) is
far from the distribution of F (σ) for a uniform random per-
mutation σ, the key is to estimate the variance. (This ap-
proach was used by Wilson [21, 22] to prove Ω(n3 logn)
lower bounds for the shuffle generated by transpositions of
adjacent cards and several variants.) The variance is a sum
of correlations between pairs of cards; to bound these cor-
relations, we couple the shuffle with a system of indepen-
dent particles evolving according to M . This coupling ap-
proach has intuitive appeal, and could potentially be used
for other chains on permutations. Alternatively, one could
bound the variance of F (σt) using the martingale decom-
position method of Wilson [21, 22].

Our general upper bound for semi-random transpositions
is elementary and proved via a strong uniform time argu-
ment, extending earlier arguments of Broder and Mironov.

We believe that some of our technical insights may be
carried over to other situations where lower bounds for non-
reversible or “pseudo-random” Markov chains are sought.
These insights include:

• The analysis of a given Markov chain with a transition
rule that varies in time can sometimes be reduced to the
analysis of an equivalent time-homogeneous chain.

• Coupling arguments, which are often applied to obtain
upper bounds for mixing times, can also be used to es-
tablish lower bounds.

• When seeking to understand a nonreversible Markov
chain, results of classical complex analysis (such as
Rouché’s theorem) can be powerful tools. Thus meth-
ods from complex analysis should be added to
techniques from probability, combinatorics, func-
tional analysis and representation theory in the toolkit
of Markov chain analysis.

1.1. Statement of main results

Let {Lt}∞t=1 be a sequence of random variables taking
values in [n] = {0, 1, . . . , n − 1} and let {Rt}∞t=1 be a
sequence of i.i.d. cards chosen uniformly from [n]. The
semi-random transposition shuffle generated by {Lt} is

a stochastic process {σ∗
t }∞t=0 on the symmetric group Sn,

defined as follows. Fix the initial permutation σ∗
0 . The per-

mutation σ∗
t at time t is obtained from σ∗

t−1 by transposing
the cards at locations Lt and Rt.

The stochastic process {σ∗
t } is a time-inhomogeneous

Markov chain on Sn, and converges to the uniform station-
ary distribution for any σ∗

0 and any choice of {Lt}. It is
a time-homogeneous Markov chain if the Lt are i.i.d. The
special case where the Lt are i.i.d. uniform is the random
transposition shuffle [2, 3, 11], the random walk on Sn gen-
erated by all transpositions; at the other extreme, if all theLt

are identically 0, we get the random walk generated by
“star transpositions”, where at each step a randomly chosen
card is exchanged with the card at position 0. In the cyclic-
to-random shuffle, the sequence Lt is given by Lt = t
mod n.

Let µ∗
t be the distribution of σ∗

t at time t, and let
‖µ∗

t − U‖TV denote the total variation distance be-
tween µ∗

t and the uniform distribution U . Define the mixing
time by

τ(ε) = max
σ0

min{t : ‖µ∗
t − U‖TV ≤ ε}.

We let τmix = τ( 1
2e ) and note that τ(ε) ≤ dlog ε−1eτmix

(see [2]). Therefore, proving an Ω(g(n)) bound on τ(ε) for
fixed ε > 0 implies an Ω(g(n)) bound on τmix. With slight
abuse of notation, we say that the mixing time is Ω(g(n))
if there exist constants ε, C such that τ(ε) ≥ Cg(n) for all
sufficiently large n.

Our first result is a lower bound for the mixing time
of the cyclic-to-random shuffle, matching (up to a constant
factor) the upper bound of Mironov [16]:

Theorem 1.1 The cyclic-to-random shuffle has mixing time
Ω(n logn). More precisely,

τ

( ‖χ‖4
2

8‖χ‖4
∞

−O(
1

n

)
≥ n logn

2|<ζ + 1|(1 + o(1))
, (1)

where ζ is any nonzero complex root of the equationψ(z) =
ez − z − 1 = 0 and χ : [0, 1] → C is defined by

χ(x) := 1 − ζ + 1

ζ
(eζx − 1). (2)

Remark. Using Mathematica, we find the root
ζ = 2.088... + 7.461... × i of ψ. This gives
|1 + ζ| = 8.075..., |<ζ + 1| = 3.088... and yield the
lower bounds τ(0.0095) ≥ (.161 + o(1))n logn and
τmix ≥ (0.0345 + o(1))n log n.

We note that a Ω(n logn) lower bound for the random
transposition shuffle follows easily from a coupon collec-
tor argument: up to time (n logn)/4, about

√
n of the cards

have not moved even once. However, such a simple argu-
ment cannot work for the cyclic-to-random shuffle as all
cards are touched by time n.



Our second result is an upper bound for the mixing time
of any semi-random transposition shuffle:

Theorem 1.2 The semi-random transposition shuffle {σ∗
t }

generated by any sequence {Lt} has mixing time at most
O(n logn). More precisely, there is a constantC0 such that,
for any C1 > C0 and any initial configuration σ∗

0 , we have

τ(n−β) ≤ C1n logn.

for some β = β(C1) > 0.

Remark. The proof shows that we can take C0 = 32θ−3 +
θ−1 where θ = e−2(1 − e−1)/2. We do not know the
minimal value of C0; it cannot be strictly less than 1 be-
cause of the star transpositions shuffle, whose mixing time
is (1 + o(1))n logn (see [8]).

2. A lower bound for the cyclic-to-random
shuffle

2.1. The behavior of a single card via renewals

Fixing a specific card a, it is natural to study the re-
newal chain on the state space [n] = {0, . . . , n− 1}, where
state i ∈ [n] indicates that the location j of card a satis-
fies j + i = t mod n. This chain is time-homogeneous. It
is obtained from the original chain by rotating all cards to
the left after each transposition.

This chain is described by the transition matrix M ,
where for all i ∈ [n] we have M0,i = 1/n and Mi,1 = 1/n,
while Mi,i+1 = 1 − 1/n, for all i ≥ 1. (For i = n− 1, the
last equation reads Mn−1,0 = 1 − 1/n.) In other words,

M =




1
n

1
n

1
n

1
n . . . 1

n
1
n

0 1
n 1 − 1

n 0 0 . . . 0

0
... 0

. . . 0 . . . 0

0
... 0 0

. . . . . . 0

0
... 0 . . . 0

. . . 0
0 1

n 0 . . . 0 0 1 − 1
n

1 − 1
n

1
n 0 . . . 0 0 0




.

We will now find the eigenfunctions of the chain,
that is, the right eigenvectors of the matrix M . Let
f = (f(0), . . . , f(n − 1))T be such a (column) eigenvec-
tor. Then we obtain the following equations:

1

n

n−1∑

j=0

f(j) = λf(0), (3)

and, for 1 ≤ i ≤ n− 1,

1

n
f(1) + (1 − 1

n
)f(i+ 1) = λf(i) (4)

(where we set f(n) = f(0)). It is easy to check that,
up to scaling, (1, . . . , 1)T is the unique eigenvector cor-
responding to the eigenvalue λ = 1, and that (−1, n −
1,−1, . . . ,−1)T is the unique eigenvector corresponding to
λ = 0.

We now assume that f is a right eigenvector correspond-
ing to an eigenvalue λ /∈ {0, 1}. SinceM is doubly stochas-
tic, (3) implies that

∑n−1
i=0 f(i) = 0 and f(0) = 0; to verify

this, sum (3) and the n− 1 equations in (4).
Writing yi = f(i+ 1) − f(i) for 1 ≤ i ≤ n − 1 (recall

that f(n) = f(0)), the equation (4) for i = 1 gives

y1 =
n(λ− 1)

n− 1
f(1).

For 1 ≤ i ≤ n− 2, subtracting successive equations in (4)
yields

(1 − 1

n
)yi+1 = λyi.

Thus if we set γ = nλ
n−1 , then y1 = (γ − n

n−1 )f(1) and
yj = γj−1y1 for 2 ≤ j ≤ n− 1. Without loss of generality
we may assume that f(1) = 1. Therefore,

f(k) = 1 +

k−1∑

j=1

yj = 1 + y1

k−1∑

j=1

γj−1 (5)

= 1 +

(
γ − n

n− 1

) k−1∑

j=1

γj−1

for 1 ≤ k ≤ n. Thus

(n− 1)(1 − γ)f(k) =
(
n− (n− 1)γ

)
γk−1 − 1

for 1 ≤ k ≤ n. Since
∑n−1

k=0 f(i) = 0 and f(n) = f(0), we
infer that

0 = (n− 1)(1 − γ)2
n∑

k=1

f(k)

=
(
n− (n− 1)γ

)
(1 − γn) − n(1 − γ)

= γ − nγn + (n− 1)γn+1 .

Since γ 6= 0 by assumption, it follows that

(n− 1)γn − nγn−1 + 1 = 0 . (6)

Note that this equation has a double root at γ = 1. We there-
fore conclude that the eigenvalues λ 6= 0, 1 correspond (via
the relation γ = nλ

n−1 ) to the roots γ 6= 1 of (6). We investi-
gate these roots next.

2.2. Properties of the roots of equation (6)

Lemma 2.1 All the roots of equation (6) satisfy |γ| ≤ 1.



Proof: If |γ| > 1, then

|(n− 1)γn−1| >
∣∣∣
n−2∑

i=0

γi
∣∣∣ =

∣∣∣
γn−1 − 1

γ − 1

∣∣∣.

Multiplying by |γ − 1| gives

|(n− 1)γn − (n− 1)γn−1| > |γn−1 − 1|,

so γ cannot be a solution to (6).

In the other direction, we need to show that (6) has solu-
tions close to 1. We prove:

Lemma 2.2 There exists a solution of equation (6) which
satisfies

1 − γ =
ζ

n
+O(

1

n2
) (7)

1 − λ =
ζ + 1

n
+O(

1

n2
), (8)

and

1 − |λ| =
<ζ + 1

n
+O(

1

n2
), (9)

where ζ is any nonzero root of eζ − ζ − 1 = 0, and λ =
(1 − 1/n)γ.

Proof: Defining ω = γ−1, we obtain from (6) the equation
ωn−nω+n−1 = 0, or ωn +n(1−ω)−1 = 0. Now write
ω = 1 + z/n to get the asymptotic equation ψ(z) ≡ ez −
z − 1 = 0. By Hurwitz’s theorem (see [1]), every solution
ζ of the equation ψ(ζ) = 0 is a limit of solutions z of the
equations (1 + z/n)n − z− 1 = 0. Since ω− 1 = z/n, we
obtain

γ = 1 − z/n+O(
1

n2
). (10)

Therefore

λ = (1 − 1/n)γ = 1 − 1 + z

n
+O(

1

n2
) . (11)

To get more precise estimates, recall that ψ(z) = ez −z−1
and let ϕn(z) = (1+z/n)n−z−1. By a Taylor expansion,

|n log(1 + z/n) − z| =
|z|2
2n

+O(
1

n2
) ,

so in a bounded domain,

|ϕn(z) − ψ(z)| = |(1 + z/n)n − ez| =
|z2ez|
2n

+O(
1

n2
) .

Below we will prove that the equation ez − z − 1 = 0
has nonzero roots. Let ζ be such a root; then ζ is a simple
root, since ψ′(ζ) = eζ − 1 = ζ. Thus for z on the circle
{|z − ζ| = b/n}, we have

|ψ(z)| = |ψ′(ζ)| b
n

+O(
1

n2
) = |ζ| b

n
+O(

1

n2
).

On the other hand, for z on that circle,

|ϕn(z) − ψ(z)| =
|ζ2eζ |

2n
+O(

1

n2
) .

By Rouché’s Theorem (see [1]), it follows that if b >
|ζeζ/2| and n is large enough, then ϕn has the same num-
ber of zeros as ψ in the disk {|z − ζ| < b/n}, namely, ex-
actly one zero. We thus obtain (7) from (10). Similarly, (8)
follows from (11). To get (9) note that from (8) it follows
that =λ = O(1/n) and <λ = Θ(1). Therefore

|λ| =
√

(<λ)2 + (=λ)2 = |<λ| +O(
1

n2
)

which by (8) again implies that

1 − |λ| = 1 − |<λ| +O(
1

n2
) =

1 + <ζ
n

+O(
1

n2
).

It remains to prove that the equation ez −z−1 = 0 has a
nonzero root z. (Plainly z = 0 is a root.) To this end, write
z = x+ iy to get

ex cos y = 1 + x and ex sin y = y .

Solve for x to get x = y cos y/ sin y−1. Inserting this value
of x into the second equation we get

y

sin y
= exp

(
y cos y

sin y
− 1

)
. (12)

We will find a solution of the form y = 2πm + a, where
π/4 < a < π/2. Note that if y = 2πm + π/4, then the
left hand side of (12) is

√
2y, while the right hand side

is exp(y − 1), which is strictly larger than
√

2y for all
m ≥ 1. If, on the other hand, y = 2πm+ π/2, then the left
hand side is y while the right hand side is exp(−1), which
is strictly smaller than y. We conclude that for all inte-
gers m ≥ 1, there exists at least one solution y = 2πm+ a,
where π/4 < a < π/2.

2.3. The test function

In this subsection we fix an eigenvalue λ of M such that
|λ| ≥ 1 − O(1/n), whose existence is guaranteed by the
previous subsection, and let f : [n] → C be a correspond-
ing eigenfunction. We will denote the states of the n cards at
time t by σt(0), . . . , σt(n−1), and assume that at time 0 we
start with the identity permutation, so σ0(i) = i for all i. We
emphasize that σt is obtained from σt−1 by first transpos-
ing the card at state 0 with a uniform random card, and then
moving all cards one state up (modulo n). Thus for each i,
the sequence {σt(i)}t≥0 is a Markov chain with transition
matrix M . To relate this to the description of the cyclic-to-
random shuffle {σ∗

t } in the introduction, observe that σ∗
t is

obtained from σt by a rotation through t mod n.
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256 drawn in the complex plane

We focus on the following test function F : Sn → C :

F (σ) =
1

n

n−1∑

i=0

f(σ(i))f(i). (13)

We will study the distribution of F under both the uni-
form distribution and under the distribution of σt. See Fig-
ure 1 for a numerical sample of F under these two distri-
butions for t = n = 256, provided by Ilya Mironov. The
fact that these two distributions are significantly different
for t = o(n logn) will yield our lower bound on the mix-
ing time of the cyclic-to-random shuffle.

Since f satisfies
∑n−1

i=0 f(i) = 0, under the uniform dis-
tribution U on Sn we have

EU [F (σ)] = 0. (14)

It is also easy to see that F is an eigenfunction of the shuf-
fle, i.e.,

E[F (σt+1)|σt] =
1

n

n−1∑

i=0

E[f(σt+1(i))|σt]f(i)

= λF (σt) (15)

and therefore

E[F (σt)] = λtF (σ0) = λt‖f‖2
2, (16)

where ‖ · ‖2 denotes the `2-norm w.r.t. the uniform distribu-
tion on [n], i.e., ‖f‖2

2 = 1
n

∑n−1
i=0 |f(i)|2.

We now calculate the second moment of F (σ) under the
stationary distribution.

Lemma 2.3

EU

(
|F (σ)|2

)
=

‖f‖4
2

n− 1
.

Proof: Clearly EU

(
|F (σ)|2

)
equals

1

n2

∑

i6=j

EU

(
f(σ(i))f(σ(j))

)
f(j)f(i)

+
1

n2

∑

i

EU

(
|f(σ(i))|2

)
|f(i)|2. (17)

The second term in (17) can be evaluated as

1

n2

∑

i

EU

(
|f(σ(i))|2

)
|f(i)|2 =

‖f‖2
2

n2

∑

i

|f(i)|2

=
‖f‖4

2

n
. (18)

Now let i 6= j and let η be an independent copy of σ. Then
EU [f(σ(i))f(σ(j))] is equal to

n

n− 1

(
EU

(
f(σ(i))f(η(j))

) 1

n
EU

(
|f(σ(i))|2

))
,

which in turn is the same as

−
EU

(
|f(σ(i))|2

)

n− 1
= − ‖f‖2

2

n− 1
.

Similarly,

∑

i6=j

f(j)f(i) =
∑

i

∑

j

f(j)f(i)−
∑

i

|f(i)|2 = −n‖f‖2
2.

Therefore, the first term in (17) can be evaluated as

− ‖f‖2
2

n2(n− 1)

∑

i6=j

f(j)f(i) =
‖f‖4

2

n(n− 1)
. (19)

Substituting (18) and (19) into (17) completes the proof of
the lemma.

For later use, we record here a simple variational bound
on f :

Lemma 2.4 We have

‖f‖∞
‖f‖2

=
‖χ‖∞
‖χ‖2

+O(1/n). (20)

where χ is defined in (2).



Proof: It follows from (5) that for all k 6= 0,

f(k) = 1 +
n

n− 1
(λ − 1)

γk−1 − 1

γ − 1

= 1 −
(
ζ + 1

n− 1
+O(

1

n2
)

)
e

(k−1)ζ
n − 1 +O( 1

n )
ζ
n +O( 1

n2 )

= 1 − ζ + 1

ζ
(e

(k−1)ζ
n − 1) +O(

1

n
). (21)

Now it is easy to see that ‖f‖2 = ‖χ‖2 + O(1/n) and that
‖f‖∞ = ‖χ‖∞ +O(1/n) . The proof follows.

2.4. The second moment of F (σt)

We begin with an estimate of the contribution to the sec-
ond moment from a specific pair of cards. Fix two distinct
cards, i and j. Denote by Ai(s) = {σs(i) = 0} the event
that at step s card i is in state 0 (so it will be transposed with
a uniform random card in the next step). Let

Nij(t) =

t−1∑

s=0

(P[Ai(s)] + P[Aj(s)])

denote the expected number of times s < t where one of
cards i, j was at state 0. Since at each step there is exactly
one card in state 0, we have

∑n−1
i=0

∑t−1
s=0 P[Ai(s)] = t and

therefore ∑

i6=j

Nij(t) ≤ 2nt . (22)

Next, we will couple {σt} with a process {(ηt, η̃t)},
where η and η̃ are two independent copies of the cyclic-to-
random shuffle starting from the identity permutation. We
will observe the motions of cards i, j in η, η̃ respectively;
note that, in contrast to σt, these two motions are indepen-
dent. We use the coupling to bound the dependence between
the cards in σ.

Lemma 2.5 For any two cards i 6= j and all t, the quantity
∣∣∣E

[
f(σt(i))f(σt(j))

]
−E

[
f(ηt(i))f(η̃t(j))

]∣∣∣ (23)

is bounded above by

4t+ 4nNij(t)

n2
‖f‖2

∞. (24)

Proof: We inductively define a coupling of the process
{σt} and the pair process {(ηt, η̃t)}. If (σs(i), σs(j)) 6=
(ηs(i), η̃s(j)) then the updates for the σ and (η, η̃) are per-
formed independently. Otherwise, we have

(σs(i), σs(j)) = (ηs(i), η̃s(j)) , (25)

and there are three cases to consider in the definition of the
coupling at step s+ 1:

Case 1. Card i is in state 0 at time s.

Case 2. Card j is in state 0 at time s.

Case 3. Both cards i, j are not in state 0 at time s.

In Case 1, the transition probabilities to (σs+1(i), σs+1(j))
are given by

{
(`, σs(j) + 1) w.p. 1

n ∀` 6= σs(j) + 1,

(σs(j) + 1, 1) w.p. 1
n ,

and we define (ηs+1(i), η̃s+1(j)) to be




(`, η̃s(j) + 1) w.p. n−1
n2 ∀` 6= η̃s(j) + 1

(η̃s(j) + 1, 1) w.p. 1
n2 ,

(η̃s(j) + 1, η̃s(j) + 1) w.p. n−1
n2 ,

(`, 1) w.p. 1
n2 ∀` 6= η̃s(j) + 1

Thus, given that the processes satisfy (25) at time s and that
at that time card i is at location 0, we may couple the pro-
cesses to satisfy (25) at time s + 1 with conditional proba-

bility at least (n−1)2

n2 > 1 − 2
n . Similarly, in Case 2, if the

coupling satisfies (25) at time s then (25) can be satisfied at
time s+ 1 with conditional probability at least 1 − 2

n .
In Case 3, the transition probabilities to

(σs+1(i), σs+1(j)) are given by





(σs(i) + 1, σs(j) + 1) w.p. 1 − 2
n ,

(σs(i) + 1, 1) w.p. 1
n ,

(1, σs(j) + 1) w.p. 1
n .

and we define (ηs+1(i), η̃s+1(j)) to be





(ηs(i) + 1, η̃s(j) + 1) w.p. 1 − 2
n + 1

n2 ,
(ηt(i) + 1, 1) w.p. 1

n − 1
n2 ,

(1, η̃s(j) + 1) w.p. 1
n − 1

n2 ,
(1, 1) w.p. 1

n2 .

It therefore follows that in Case 3, if the processes satisfy
(25) at time s, they may be coupled to satisfy it at time s+1
with conditional probability at least 1 − 4

n2 .
It follows that the probability that the processes “unglue”

by time t (i.e., (25) fails for some s ≤ t) is at most

2

n
Nij(t) +

2t

n2
. (26)

We now estimate the difference of expected val-
ues in (23). On the event where the processes satisfy (25)
at time t we get a contribution of zero. On the complemen-
tary event we get a contribution bounded by 2‖f‖2

∞. We
thus obtain the bound (24) from (26).

Since the processes η and η̃ defined in the foregoing
proof are independent, it follows as in (16) that

E

[
f(ηt(i))f(η̃t(j))

]
= E[f(ηt(i))]E[f(η̃t(j))]

= λtf(i)λtf(j)

= |λ|2tf(i)f(j).



Therefore, from Lemma 2.5 we obtain

Corollary 2.6 For any two cards i 6= j and all t, the quan-
tity ∣∣∣E

(
f(σt(i))f(σt(j)

)∣∣∣

is bounded above by
(
|λ|2t +

4t+ 4nNij(t)

n2

)
‖f‖2

∞.

We are now in a position to bound the second moment of F .

Lemma 2.7 E
[
|F (σt)|2

]
is bounded above by

(
|λ|2t +

12t+ n

n2

)
‖f‖4

∞.

Proof: We have

E
[
|F (σt)|2

]
=

1

n2

∑

i6=j

E

[
f(σt(i))f(σt(j))

]
f(j)f(i)

+
1

n2

∑

i

E
[
|f(σt(i))|2

]
|f(i)|2. (27)

To deal with the second term, note that

1

n2

∑

i

E
[
|f(σt(i))|2

]
|f(i)|2 ≤ ‖f‖4

∞

n
. (28)

Turning to the first term, by Corollary 2.6, for any i 6= j,
∣∣∣E

[
f(σt(i))f(σt(j))

]
f(j)f(i)

∣∣∣

is bounded above by
(
|λ|2t +

4t+ 4nNij(t)

n2

)
‖f‖4

∞. (29)

Inserting (28) and (29) into (27) we obtain that E
[
|F (σt)|2

]

is bounded above by

‖f‖4
∞

n2



n+ n2|λ|2t + 4t+
4n

n2

∑

i6=j

Nij(t)



 ,

which is in turn bounded above by

‖f‖4
∞

n2

(
n+ n2|λ|2t + 12t

)
,

using (22). This completes the proof.

2.5. The mixing time

Given the bound on the second moment of our test func-
tion from the previous section, and the bound on the eigen-
value from section 2.2, it is straightforward to derive a lower
bound on the mixing time.

Proof of Theorem 1.1 Recall from Lemma 2.2 that the
equation ez − z − 1 = 0 has nonzero roots, and let ζ be
such a root. By Lemma 2.2 it follows that there exists a so-
lution γ of the equation (n− 1)γn − nγn−1 + 1 = 0 satis-
fying (7) and (8). Fix such a γ, let λ = (1 − 1/n)γ and let
f be a corresponding eigenfunction of M .

We use the test functionF based on f , as defined in (13).
Let µt be the distribution of σt in the cyclic-to-random shuf-
fle where σ0 is the identity permutation, and recall that U
denotes the (uniform) stationary distribution on Sn. Let g2

be the density of µt with respect to ν = (µt +U)/2. Let h2

be the density of U with respect to ν.
By (14) and (16) we have that

|λ|t‖f‖2
2 = |Eµt

[F ] −EU [F ]|

=

∣∣∣∣
∫
Fg2 dν −

∫
Fh2 dν

∣∣∣∣ .

On the other hand,
∣∣∣∣
∫
Fg2 dν −

∫
Fh2 dν

∣∣∣∣
2

=

∣∣∣∣
∫
F (g + h)(g − h) dν

∣∣∣∣
2

,

which by Cauchy-Schwartz is bounded by
∫

|F |2(g + h)2 dν ×
∫

(g − h)2 dν .

By Lemmas 2.3 and 2.7,
∫
|F |2(g + h)2 dν is bounded

above by

2

∫
|F |2g2 dν + 2

∫
|F |2h2 dν

= 2Eµt

(
|F |2

)
+ 2EU

(
|F |2

)

≤ 2‖f‖4
2

n− 1
+ 2

(
|λ|2t +

12t+ n

n2

)
‖f‖4

∞

≤ 2

(
|λ|2t 12t+ 3n

n2

)
‖f‖4

∞.

Moreover,
∫

(g − h)2 dν ≤
∫

|g2 − h2| dν = 2‖µt − U‖TV.

Thus,

‖µt − U‖TV ≥ |λ|2t‖f‖4
2

4‖f‖4
∞

(
|λ|2t + 12t+3n

n2

) .

Recalling Lemma 2.4, we conclude that the last expression
equals

( ‖χ‖4
2

4‖χ‖4
∞

+O

(
1

n

)) ( |λ|2t

|λ|2t + 12t+3n
n2

)
.

It follows that (1) holds when |λ|2t ≥ 12t+3n
n2 . Note that if

t ≥ n, then 12t+3n
n2 ≤ 15t

n2 . Therefore (1) holds if t ≥ n and

−2t log |λ| + log t ≤ 2 logn− log(15). (30)



Note that by (9) we have − log |λ| ≤ |<ζ+1|/n+O(1/n2).
Therefore, taking

t =
1

2|<ζ + 1|n (logn− log logn− b)

where b is a large constant we obtain (30) as needed.

3. An upper bound for general semi-random
transpositions

In this section we prove Theorem 1.2.

Proof: By the triangle inequality it suffices to prove the
theorem assuming that the Lt are deterministic. We thus re-
strict to that case.

We define a strong uniform time for the shuffle, i.e., a
stopping time T with the property that, givenT = t, the ran-
dom permutation σ∗

t has the uniform distribution over Sn.
It is well known (see, e.g., [3]) that, if T is a strong uni-
form time, then the distribution µ∗

t of σ∗
t satisfies

‖µ∗
t − U‖TV ≤ P[T > t] ∀t.

Following Broder (as described in [9]) and Mironov [16],
we define the stopping time in terms of a card marking pro-
cess as follows. Initially all cards are unmarked. First, the
card initially at L1 is marked. Later, at time t, we mark the
card at Lt if it is unmarked and the card at Rt is already
marked, and also if Rt = Lt and this location has an un-
marked card. Once a card is marked it remains so at all fu-
ture times. Set T to be the first time t at which all cards
are marked. Clearly T is a stopping time. The theorem fol-
lows immediately from the following two claims:
Claim 1: T is a strong uniform time.
Claim 2: There exists C0 < ∞ such that for any C1 > C0

we have
P

(
T > C1n logn

)
≤ n−β,

for some β = β(C1) > 0. Specifically, this holds for C0 =
32θ−3 + θ−1, where θ = e−2(1 − e−1)/2.
Proof of Claim 1: By induction, it is easy to check the fol-
lowing. At any time t, given that k cards have been marked,
conditional on the set of marked cards and their locations,
the mapping between these two sets (assigning to every
marked card its location) is uniformly distributed among the
k! possibilities. See [16] or [9] for details.
Proof of Claim 2: Divide time into successive epochs of
length 2n, starting after the card at L1 is marked. Denote
by uk the fraction of unmarked cards before epoch k, so
u1 = 1 − 1/n. Let mk = 1 − uk. Let Hk denote the his-
tory of the process prior to epoch k, and note that uk is a
function of Hk.
Claim 3: E(uk+1|Hk) ≤ uk[1 − 2θmk] for all k, where
θ = e−2(1 − e−1)/2.

Proof: Consider a card x, unmarked before epoch k. Of
the 2n prescribed locations {Lt} in the epoch, at most n are
their last occurrence in the epoch. Thus for 1 ≤ j ≤ n we
can find t(j) < s(j) in the epoch such that Lt(j) = Ls(j).
For each j ≤ n, we have Rt(j) = x with probability 1/n.
Therefore, the event Ax that there exists a j ≤ n satisfy-
ing Rt(j) = x, has probability

P(Ax|Hk) ≥ 1 − (1 − 1/n)n ≥ 1 − e−1.

On Ax, we fix j to be minimal such that Rt(j) = x. Given
Ax and Hk, with probability at least (1− 1/n)2n−2 > e−2,
we have Rt 6= Lt(j) for all t such that t(j) < t < s(j).
In that case, x is untouched by the random choices between
times t(j) and s(j), and then with probability at least mk

the card at Rs(j) is one of the nmk cards marked prior to
epoch k. Thus x gets marked with probability at least 2θmk.
The assertion of Claim 3 follows.

Proof of Claim 2 continued: Using Claim 3, we first quan-
tify the time to mark at least half the cards (i.e., to achieve
mk ≥ 1/2), and then the time to mark the remaining cards
(i.e., to achieve uk < 1/n). Denote by Dk the number of
cards that get marked during epoch k as a result of being
transposed with a card that was marked prior to epoch k.
Clearly mk+1 ≥ mk + Dk/n. The proof of Claim 3 im-
plies that

(i) if mk < 1/2, then E(Dk|Hk) ≥ θnmk;

(ii) if mk ≥ 1/2, then E(uk+1|Hk) ≤ (1 − θ)uk.

To bound the number of epochs where mk < 1/2, we
need a stochastic lower bound for Dk:
Claim 4: If mk < 1/2, then

P

(
Dk ≥ θnmk

2

∣∣∣Hk

)
≥ θ2

8
.

Proof: Using the notation in the proof of Claim 3, Denote
by D̃k the number of j ≤ n such that Rs(j) is one of the

nmk cards marked prior to epoch k. ClearlyDk ≤ D̃k. The
distribution of D̃k is Binomial(n,mk), and this also holds
given Hk. Therefore,

E(D2
k|Hk) ≤ E(D̃2

k|Hk) ≤ (nmk)2 + nmk ≤ 2(nmk)2.

In conjunction with (i) above, this yields

E(D2
k|Hk) ≤ C2E(Dk|Hk)2 ,

where C2 = 2θ−2. A standard second moment bound (see,
e.g., [15, p. 8]) now yields Claim 4.

Proof of Claim 2 concluded: Call epoch k a “growth
epoch” if mk+1 ≥ (1 + θ/2)mk. Call epoch k a “good
epoch” if it is a growth epoch or it satisfies mk ≥ 1/2.
Claim 4 implies that the conditional probability that epoch
k is a good epoch, given Hk, is at least θ2/8. Thus the



number of good epochs among the first k3 = C3 logn
epochs stochastically dominates a Binomial(k3, θ

2/8) ran-
dom variable. Fix C3 > 32θ−3, and denote by Ω3 the
event that there are at least (4 logn)/θ good epochs among
the first k3 epochs. Recall that the probability that a bino-
mial random variable differs from its mean by a constant
multiple of the mean decays exponentially in the number
of trials k3 = C3 logn. We infer that P(Ωc

3) < n−β/2
for some β > 0. Moreover, since (1 + θ/2)4/θ > e and
m1 = 1/n, the number of growth epochs must be smaller
than (4 logn)/θ. Thus on Ω3 we have mk3 ≥ 1/2.

Turning now to the second portion, once mk ≥ 1/2 we
have from (ii) above that E(uk+1|uk) ≤ (1 − θ)uk. There-
fore, for all k > 0 we have

E(uk3+k |Ω3, uk3) ≤ (1 − θ)kuk3 ≤ e−θk

2
.

Thus if k = (1 + β)θ−1 log n, then

P(uk3+k ≥ 1/n |Ω3) ≤ E(nuk3+k |Ω3)

≤ n · n
−1−β

2
=
n−β

2
.

In conjunction with the bound for P(Ωc
3), this implies

that P(uk3+k ≥ 1/n) ≤ n−β for this value of k. In other
words, if C1 > C0 = 32θ−3 +θ−1 and k1 = C1 logn, then
there exists β = β(C1) > 0 such that P(uk1 ≥ 1/n) ≤
n−β. This completes the proof of Claim 2 and hence of the
theorem.

4. Concluding remarks and further problems

1. We have shown that the cyclic-to-random shuffle on
n cards has mixing time of order Θ(n logn). How-
ever, the constant in our general upper bound, and
that in the specific cyclic-to-random upper bound of
Mironov [16], are significantly larger than the constant
in our lower bound. We believe that the lower bound is
closer to the truth and that this shuffle exhibits the “cut-
off phenomenon”, i.e., there is a constant C∗ such that
for t < (1 − ε)C∗n logn the distribution after t steps,
µ∗

t , satisfies ‖µ∗
t − U‖TV = 1−o(1) as n→ ∞, while

for t > (1+ε)C∗n logn we have ‖µ∗
t − U‖TV = o(1)

as n → ∞. Proving this, and determining C∗, remain
a challenge. We note that repeating the proof of Theo-
rem 1.1 one obtains the same lower bound (1) for τ(ε)
for all small ε. Is C∗ = (2|<ζ + 1|)−1?

2. Given the test function F one can define a “distin-
guisher” between the uniform distribution and the dis-
tribution of σt by letting D(σ) = 1{<(λ−tF (σ))>0}.
Note that EU [λ−tF ] = 0 while Eµ∗

t
[λ−tF (σ)] =

‖f‖2
2. Clearly,

‖µ∗
t − U‖TV > Advt(D) := Eµt [D] −EU [D]
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Figure 2. The advantage of the test D(σ) =
1{<(λ−tF (σ))>0} as function of t/n for various
values of n.

(the quantity Advt(D) is often referred to as the ad-
vantage of the distinguisher D). See Figure 2 for ex-
periments run by Ilya Mironov. These experiments
suggest that, for each fixed distinguishing probability
forD, the number of steps t should scale as n logn, as
expected from the Θ(n logn) mixing time of the shuf-
fle.

3. For which sequence {Lt} does the resulting semi-
random transposition shuffle on n cards have the
largest mixing time?
We suspect that the slowest shuffle in this class is the
“star transpositions” shuffle, for which Lt = 0 for all
t, and the mixing time is (1 + o(1))n logn by [8].

4. Is there a universal constant c > 0 such that, for any
semi-random transposition shuffle on n cards, the mix-
ing time is at least cn logn ?
For this lower bound question there is no obvious re-
duction to the case where the sequence {Lt} is deter-
ministic, so conceivably the question could have differ-
ent answers for deterministic {Lt} and random {Lt}.
Two specific cases of interest are:

• For each k ≥ 0, let {Lkn+r}n
r=1 be a uniform

random permutation of {0, . . . , n − 1}, where
these permutations are independent.

• Let {Lt} be a Markov chain with memory 2,
where L1 = 0, L2 = 1 and for each t ≥ 3 we
have Lt+1 = 2Lt − Lt−1 mod n with proba-
bility 1 − 1/n and Lt+1 = Lt−1 with probabil-



ity 1/n. This choice of {Lt} was suggested to
us by Igor Pak (personal communication), moti-
vated by [7].

Each of these examples has a “quenched” version,
where the sequence {Lt} is picked in advance and then
used as a deterministic sequence, and an “annealed”
version, where the {Lt} are random variables with the
specified distribution.

5. What, if any, are the implications of our results for
the analysis of RC4? We first indicate briefly the con-
nection to RC4, as argued by Mironov [16]. RC4 is a
stream cipher whose output stream is generated from
an internal state consisting of a pseudo-random per-
mutation on [n] = {0, 1, . . . , n − 1}. (In practice,
n = 256.) Encryption is performed by XORing the
output stream (i.e., elements of [n]) with the plaintext.
The permutation is initialized by exchanging the num-
ber at position t with that at a “pseudo-random” posi-
tion, for t = 0, 1, . . . , n−1. At each subsequent step, a
similar exchange operation is performed. Mironov [16]
argues that the essential flavor of RC4 is retained if
one replaces the “pseudo-random” position by a truly
random one. In this case, the operations performed on
the permutation are exactly the cyclic-to-random shuf-
fle on n cards. Before the mixing time of the cyclic-
to-random shuffle, “traces” of the initial permutation
remain. If one accepts the argument that the shuffle
captures the essential features of RC4, then the lower
bound of Ω(n logn) on the mixing time suggests the
presence of a statistical bias in the output stream that
persists for a significant number of passes. (A “pass”
is a sequence of n = 256 outputs.) However, it is
not clear how to exploit this bias to produce a compu-
tationally efficient test, or “distinguisher”, that could
form the basis of an attack.
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