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Abstract

Cryan and Miltersen [7] recently considered the ques-
tion of whether there can be a pseudorandom generator in
NC0, that is, a pseudorandom generator that mapsn bits
strings tom bits strings and such that every bit of the out-
put depends on a constant numberk of bits of the seed.

They show that fork = 3, if m ≥ 4n + 1, there is a
distinguisher; in fact,they show that in this case it is possi-
ble to break the generator with alinear test, that is, there is
a subset of bits of the output whose XOR has a noticeable
bias.

They leave the question open fork ≥ 4. In fact they ask
whether every NC0 generator can be broken by a statistical
test that simply XORs some bits of the input. Equivalently,
is it the case that no NC0 generator can sample anε-biased
space with negligibleε?

We give a generator fork = 5 that mapsn bits intocn
bits, so that every bit of the output depends on 5 bits of the
seed, and the XOR of every subset of the bits of the output
has bias2−Ω(n/c4). For large values ofk, we construct gen-
erators that mapn bits tonΩ(

√
k) bits and such that every

XOR of outputs has bias2−n
1

2
√

k .
We also present a polynomial-time distinguisher fork =

4,m ≥ 24n having constant distinguishing probability.
For large values ofk we show that a linear distinguisher
with a constant distinguishing probability exists oncem ≥
Ω(2kndk/2e).

Finally, we consider a variant of the problem where each
of the output bits is a degreek polynomial in the inputs. We
show there exists a degreek = 2 pseudo random generator
for which the XOR of every subset of the outputs has bias
2−Ω(n) and which mapn bits toΩ(n2) bits.
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1 Introduction

A pseudorandom generator is an efficient deterministic
procedure that maps a shorter random input into a longer
output that is indistinguishable from the uniform distribu-
tion by resource-bounded observers.

A standard formalization of the above informal defini-
tion is to consider polynomial-time proceduresG mapping
n bits into m(n) > n bits such that for every propertyP
computable by a family of polynomial-size circuits we have
that the quantity∣∣∣∣ Pr

z∈{0,1}l(n)
[P (z) = 1]− Pr

x∈{0,1}n
[P (G(x))]

∣∣∣∣
goes to zero faster than any inverse polynomial inn. The
existence of such a procedureG is equivalent to the exis-
tence of one-way functions [13], pseudorandom functions
[9] and pseudorandom permutations [20].

What are the minimal computational requirements
needed to compute a pseudorandom generator? Linial et
al. [17] prove that pseudorandom functions cannot be com-
puted in AC0 (constant-depth circuits with NOT gates and
unbounded fan-in AND and OR gates),1 but their result
does not rule out the possibility that pseudorandom gener-
ators could be computed in AC0, since the transformation
of pseudorandom generators into pseudorandom functions
does not preserve bounded-depth.

Impagliazzo and Naor [15], in fact, present a candidate
pseudorandom generator in AC0. Goldreich [10] suggests a
candidate one-way function in NC0. Recall that NC0 is the
class of functions computed by bounded-depth circuits with
NOT gates and bounded fan-in AND and OR gates. In an
NC0 function, every bit of the output depends on a constant
number of bits of the inputs. While it is easy to see that there
can be no one-way function such that every bit of the output
depends on only two bits of the input,2 it still remains open

1To be precise, the results in [17] only rule out security against adver-

saries running in timeO(n(log n)O(1)
).

2Finding an inverse can be formulated as a 2SAT problem.



whether there can be a one-way function such that every bit
of the output depends on only three bits of the input.

Cryan and Miltersen [7] consider the question of whether
there can be pseudorandom generators in NC0, that is,
whether there can be a pseudorandom generator such that
every bit of the output depends only on some a constantk
number of bits of the input.

They present a distinguisher in the casek = 3,m > 4n,
and they observe that their distinguisher is alinear distin-
guisher, that is, it simply XORs a subset of the bits of the
output. Cryan and Miltersen ask if there is no pseudoran-
dom generator in NC0whenm is superlinear inn. Specif-
ically, they ask if it is the case that for every constantk if
m is super-linear inn then for every generator such that ev-
ery bit of the output depends onk bits of the input, a linear
distinguisher exist.

In order to formulate an equivalent version of this prob-
lem, we introduce the notion of aε-biaseddistribution. For
ε > 0, we say that a random variableX = (X1, . . . , Xm)
ranging over{0, 1}m is ε-biased if for every subsetS ⊆ [m]
we have1/2 − ε ≤ Pr[

⊕
i∈S Xi = 0] ≤ 1/2 + ε. It is

known [23, 2] that anε-biased distribution can be sampled
by using onlyO(log(m/ε)) random bits, which is tight up
to the constant in the big-Oh.

The problem of [7] can be therefore formulated as asking
if there is noε-biased generator in NC0 that samples anm-
bit ε-biased distribution starting from, say,o(m) random
bits and with a negligibleε.

Our Results

We first extend the result of Cryan and Miltersen by giv-
ing a (non linear) distinguisher for the casek = 4,m ≥
24n. Our distinguisher has a constant distinguishing prob-
ability, which we show to be impossible to achieve with
linear distinguishers. Our distinguisher uses semidefinite
programming and uses an idea similar to the “correlation
attacks” used in practice against stream cyphers.

For all k, it is trivial that a distinguisher exists form ≥
22k(n

k

)
, and it easy to see that a distinguisher exist when

m ≥ k
(
n
k

)
. We show using a duality lemma proven in [22]

that in fact, a distinguisher with a constant distinguishing
probability exists oncem ≥ Ω(2kndk/2e).

Then we present anε-biased generator mappingn bits
into cn bits such thatε = 1/2Ω(n/c4) and every bit of the
output depends only onk = 5 bits of the seed. The param-
eterc can be chosen arbitrarily, and may depend onn. The
constant in theΩ() notation does not depend onc.

The main idea in the construction is to develop a gen-
erator withk = 3 that handles well linear tests that XOR
a small number of bits, and then develop a generator with
k = 2 that handles well linear tests that XOR alarge num-
ber of bits. The final generator outputs the bitwise XOR of

the outputs of the two generators, on two independent seeds.
The generator uses a kind of unique-neighbor expander

graphs that are shown to exist using the probabilistic
method, but that are not known to be efficiently con-
structable, so the generator is in NC0 but not in uniform
NC0.

Later we present similar constructions for large values
of k which outputnb

√
kc·( 1

2−o(1)) bits whose bias is at most

exp
(
−|n|

1−o(1)
2b
√

kc

)
.

Note the gap for large values ofk between our con-
structions that outputn(

√
k/2)(1−o(1)) bits, and the bounds

showing a distinguisher exists for generators that output
n(k/2)(1+o(1)) bits.

Finally, we begin a study of the question of whether there
are pseudorandom generators with superlinear stretch such
that each bit of the output is a function of the seed express-
ible as a degree-k polynomial overGF (2), wherek is a
constant. This is a generalization of the main question ad-
dressed in this paper, since a function depending on onlyk
inputs can always be expressed as a degree-k polynomial.
Furthermore, low-degree polynomials are a standard class
of “low complexity” functions from an algebraic perspec-
tive. In our NC0

5 construction of anε-biased generator
with exponentially smallε and superlinear stretch, every
bit of the output is a degree-2 polynomial. We show that,
for degree-2 polynomials, the stretch can be improved to
quadratic, which is optimal up to a constant factor.

Organization

In section 2 we review the analysis for the casek = 3 of
[7]. In section 3 we give a distinguisher for the casek = 4.
In section 4 we prove an upper bound on the length of the
output of anε-bias generator inNC0

k.
In section 5 we constructε-bias generator for the cases

k = 4, 5. The results for largerk are discussed in section
6. In section 7 we explicitly construct anε-bias generator
such that every bit of the output is a polynomial of degree
2. Finally we give some open problems in section 8.

2 Review of the Casek = 3

In this section we summarize the main result of [7]. We
also generalize some of the arguments of [7] that are needed
for our results.

2.1 Preliminaries

We say that a functiong : {0, 1}n → {0, 1} is bal-
anced if Pr

x
[g(x) = 1] = 1/2. We say that a func-

tion g : {0, 1}n → {0, 1} is unbiasedtowards a func-
tion f : {0, 1}n → {0, 1} if Pr

x
[g(x) = f(x)] = 1/2.
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A function g : {0, 1}n → {0, 1} is affine if there are
valuesa0, . . . , an ∈ {0, 1} such thatg(x1, . . . , xn) =
a0 ⊕ a1x1 ⊕ . . .⊕ anxn.

The following lemma was proved by case analysis for
k = 3 in [7], and the casek = 4 could also be derived
from a case analysis appearing in [7] (but it is not explic-
itly stated). The proof of the general case follows using the
Fourier representation of boolean functions and is omitted
here.

Lemma 1 Let g : {0, 1}n → {0, 1} be a non-affine func-
tion that depends on onlyk variables. Then

• There exist an affine function on at mostk−2 variables
that is correlated withg.

• Let l be the affine function that is biased towardsg and
that depends on a minimal number of variables. That
is, for somed, l depends ond variables,Pr

x
[g(x) =

l(x)] > 1/2, and g is unbiased towards affine func-
tions that depend on less thand variables.

ThenPr
x

[g(x) = l(x)] ≥ 1/2 + 2d−k.

For example, fork = 3, a non-affine functiong is either
unbalanced, or it is biased towards one of its inputs; in the
latter case it agrees with an input bit (or with its comple-
ment) with probability at least3/4.

For k = 4, a functiong either is affine, or it is unbal-
anced, or it has agreement at least5/8 with an affine func-
tion that depends on only one input bit, or it has agreement
at least3/4 with an affine functions that depends on only
two input bits.

2.2 The Casek = 3

Let G : {0, 1}n → {0, 1}m be a generator and let
gi : {0, 1}n → {0, 1} be thei-th bit of the output of the
generator. Suppose eachgi depends on only three bits of
the input.

Suppose that one of thegi is not a balanced function.
Then we immediately have a distinguisher.

Suppose that more thann of thegi are affine. Then one
of them is linearly dependent of the others, and we also have
a distinguisher.

It remains to consider the case where at leastm−n of the
functionsgi are balanced and not affine. LetI be the set of
i for whichgi is as above. Then, by lemma 1, for each such
gi there is a affine functionli that depends on onlyonebit,
such thatgi agrees withli on a3/4 fraction of the inputs.
By replacinggi with gi ⊕ 1 when needed, we may assume
that each suchgi has high correlation with one of the bits of
its input.

By the pigeonhole principle, there is a bitxj of the seed,
and a setC, |C| ≥ 1 + (m−n− 1)/n, such that the output
of gi(x1, . . . , xn) is correlated toxj for everyi ∈ C.

Lemma 2 For every δ > 0 there are constantcδ =
O(1/δ2) and εδ = O(1/δ2) such that the following
holds. LetG : {0, 1}n → {0, 1}m, and let G(x) =
(g1(x), . . . , gm(x)). Let L be a set of functions and sup-
pose that each functiongi(x) agrees with an element ofL
or with its complement with probability at least1/2+δ, and
that m ≥ 1 + cδ|L|; then there arei 6= j such thatgi ⊕ gj

has bias at leastεδ.

In order to prove the lemma letg1, . . . , gc have correla-
tion at least1/2 + δ with the same bitxi. Note that the
avergae ofZ(x) = |{#i ∈ C : gi(x) = 0} − {#i ∈
C : gi(x) = 1}| is at least2cδ. For c = O(δ−2) is a
sufficiently large constant, then the restriction of the gener-
ator toC has constant statistical distance from the uniform
distribution overc bits, for which that average value ofZ
is O(

√
c). By the Vazirani XOR lemma [27], it also fol-

lows that the XOR of some subset of the bits ofC has bias
Ω(2−|C|) = Ω(2−δ−2

).
Alternitively, we note thatZ2 =

∑
i,j Zi,j , whereZi,j =

1gi=gj
− 1gi 6=gj

. Therefor truly random bits,E[Z2] = c,
while for the pseudo random generator,E[Z2] ≥ E[|Z|]2 ≥
4c2δ2. So forc = O(δ−2) sufficiently large constant, there
must bei 6= j such thatgi ⊕ gj has aO(δ2) bias.

While the above analysis uses the same ideas as in [7],
it is slightly better because we achieve constant bias instead
of inverse polynomial bias.

In particular, we can compute that when we flip 4 random
coins, the average of the maximum between the number of
zeroes and ones is2.75 < 3

4 · 4, so we can setc1/4 = 3. In
particular, we obtain a constant distinguishing probability
oncem ≥ 4n + 1.

For the next section, it is useful to note that when we flip
10 random coins, the average of the maximum between the
number of zeroes and ones is6.23 < 5

8 · 10, so we can set
c1/8 = 9.

3 Distinguisher for the Casek = 4

In this section we construct a distinguisher fork = 4.

Theorem 3 LetG = (g1, . . . , gm) : {0, 1}n → {0, 1}m be
a map such that eachgi depends on at most4 coordinates
of the input andm ≥ 24n. Then there exists a polynomial
time algorithm which distinguish betweenG and a random
string with constant distinguishing probability. More pre-
cisely, the algorithm will output “yes” for the output of the
generatorG with probabilityΩ(1), and for a random string
with probabilitye−Ω(m).

Note that it is easy to construct a distinguisher if any of
thegi is unbalanced, or if more thann of thegi are linear.

If one of thegi is biased towards one of the bits of its
input, then it follows from lemma 1 that it must agree with
that bit or its complement with probability at least5/8.
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Thus, if more thanc1/8n = 9n of the functionsgi have
bias towards one bit, then we can obtain a distinguisher
from lemma 2.

It remains to consider the case where at leastm − 10n
of the functions are balanced, non-linear, and unbiased to-
wards single bits. Following [7], we call such functions
problematic. It follows from lemma 1 that for each prob-
lematicg there is an affine functionl of two variables that
agrees withg on a3/4 fraction of the inputs. Again, by
replacinggi by gi ⊕ 1, when needed, we may assume that
all theg′is in P have3/4 agreement probability with some
linear function.

Let P be the set ofi such thatgi is problematic. For each
suchi we denote byli the linear function of two inputs that
agrees withgi on a3/4 fraction of the inputs. In the next
section we show how ifp = |P | ≥ 14n, one can “break” the
generator using correlation attack. Correlation attacks are
often used in practice to break pseudo random generators.
The distinguisher below is a an interesting example where
one can actually prove that correlation attack results in a
polynomial time distinguisher.

3.1 The Distinguisher Based on Semidefinite Pro-
gramming

Given a stringr1, . . . , rp ∈ {0, 1}p, consider the follow-
ing linear system overGF (2) with two variables per equa-
tion.

∀i ∈ P li(x) = ri (1)

We will argue that the largest fraction of satisfying as-
signments in the system (1) is distributed differently if
r1, . . . , rp is uniform or if it is the output ofG. By Markov
inequality it follows that,

Lemma 4 If r1, . . . , rp are the output ofg1, . . . , gp, respec-
tively, then, for everyε > 0, there is a probability at least
ε that at least3/4 − ε fraction of the equations in (1) are
satisfiable. More formally

Prz∈{0,1}p

[
#{ i | gi(z) = `i(z)} ≥ 3

4
− ε

]
≥ ε.

Lemma 5 If r1, . . . , rp is chosen uniformly at random from
{0, 1}p, and |P | > (1/2δ2)(ln 2)(n + c), then the proba-
bility that there is an assignment that satisfies more than a
1/2 + δ fraction of the equations of (1) is at most2−c.

PROOF: Fix an assignmentz; then the probability that a
fraction at least1/2 + δ of theri agree withli(z) is at most
e−2δ2p ≤ 2−c−n. By a union bound, there is at most a
probability2−c that such az exists. �

Given a system of linear equations overGF (2) with
two variables per equation, it is NP-hard to determine the

largest number of equations that can be satisfied, but the
problem can be approximated to within a.878 factor using
semidefinite programming [11]. We now prove theorem 3

Proof of Theorem 3: Fix ε and δ small enough so that
.878(3/4− ε) > 1/2+ δ. Using semidefinite programming
[11] we get a polynomial time algorithm that is successful
if a fraction3/4− ε of the equations is holds, and fails if no
more than0.878(3/4−ε) of the equations hold. Fixingδ =
.158 andε = 10−4, we obtain the statement of theorem,
wherep = 14n. �

3.2 Correlation Attacks

In this section we discuss how our distinguisher for the
casek = 4 can be seen as a “correlation attack.”

Correlation attacks are a class of attacks that are often
attempted in practice against candidate pseudorandom gen-
erators,3 see e.g. the introduction of [16] for an overview.

The basic idea is as follows. Given a candidate generator
G : {0, 1}n → {0, 1}m, whereG(x) = g1(x), . . . , gm(x),
we first try and find linear relations between input bits and
output bits that are satisfied with non-trivial probability. For
example, suppose we find coefficientsai,j , bi,j andcj such
that each of the equations

∑n
i=1 ai,1xi +

∑m
i=1 bi,1gi(x) = c1 (mod 2)∑n

i=1 ai,2xi +
∑m

i=1 bi,2gi(x) = c2 (mod 2)
. . .∑n

i=1 ai,txi +
∑m

i=1 bi,tgi(x) = ct (mod 2)

(2)

is satisfied with probability bounded away from 1/2.
Now we want to use this system of equations in order to

build a distinguisher. The distinguisher is given a sample
z = (z1, . . . , zm) and has to decide whetherz is uniform or
is the output ofG. The distinguisher substituteszi in place
of gi(x) in (2) and then tries to find anx that maximizes
the number of satisfied equations. The hope is that, ifz =
G(x), then we will findx as a solution of the optimization
problem.

Unfortunately, maximizing the number of satisfied equa-
tions in a linear system overGF (2) is an NP-hard problem,
and, in fact, it is NP-hard to achieve an approximation factor
better than 1/2 [12]. In practice, one uses belief-propagation
algorithms that often work, although the method is typically
not amenable to a formal analysis.

In Section 3, we were able to derive a formal analysis
of a related method because we ended up with a system of
equations having only two variables per equation, a class
of instances for which good approximation algorithms are
known. Furthermore, we did not try to argue that, when

3Pseudorandom generators are called “stream ciphers” in the applied
cryptography literature.
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the method is applied to the output of the generator, we are
likely to recover the seed; instead, we argued that just being
able to approximate the largest fraction of satisfiable equa-
tions gives a way to distinguish samples of the generators
from random strings.

4 O(nk/2) upper bound

In this section we state the following theorem which
gives an upper bound on the maximal stretch of anε-bias
generator in NC0k.

Theorem 6 There exists a constantc such that for every
integer0 < k and any0 < ε < 2−2k, if G = (g1, . . . , gm)
is anε biased pseudo random generator, where each of the
gi’s depend on at mostk bits, thenm ≤ c2kndk/2e.

The proof uses the following lemma from [22].

Lemma 7 ([22]) Letf : {0, 1}k → {0, 1} then for allr

• Either f is a polynomial of degree at mostr overF2,
or

• f is biased towards an affine function of at mostk − r
variables.

Proof of Theorem 6: Setr = bk/2c, s = k − r and for
0 ≤ t ≤ n, B(t) =

∑t
i=0

(
n
i

)
. Note that there exists a

constant̃c such thatB(r) ≤ B(s) ≤ c̃ndk/2e, andB(s −
1) ≤ c̃nk/2−1. By lemma 7 everygi is either a degree
≤ r polynomial, or is biased towards an affine function of
at mosts variables. Letp be the number of degree≤ r
polynomials among thegi’s, bs be the number ofgi’s biased
towards an affine function of exactlys variables (but not
towards less thans variables), andb<s be the number ofgi’s
biased towards an affine function of at mosts− 1 variables.
Clearly,m ≤ p + bs + b<s.

Note that theB(r) monomials of degree≤ r on the
variablesx1, . . . , xn form a basis to the vector space of
all degree≤ r polynomials inx1, . . . , xn. Therefore if
p > B(r), there is a linear dependency between theg′is.
We therefore conclude that

p ≤ B(r) ≤ c̃ndk/2e. (3)

On the other hand, note that by lemma 1, ifg is biased
towards an affine function ofd ≤ s variables, then there
exist an affine functioǹ of at mostd variables such that
Pr[f = `] ≥ 1/2 + 2d−k. Moreover, there are exactly
B(s − 1) linear functions on at mosts − 1 variables, and(
n
s

)
linear functions on exactlys variables.

Now lemma 2 implies that there exists a constantc′ such
that if bs ≥ c′

(
n
s

)
2k, or b<s ≥ c′B(s − 1)4k then there is

a⊕ of two of thegi’s that has anO(2−k) bias orO(2−2k)
bias respectively. It therefore follows that

bs + b<s ≤ c′(2k

(
n

s

)
+ 4kB(s− 1)) ≤ ĉ2kndk/2e (4)

whereĉ is some constant, andn is large enough.
Combining (4) and (3) we obtain that

m ≤ p + bs + b<s ≤ c2kndk/2e,

for some constantc as needed.�

5 Constructions for k = 5 and k = 4

5.1 Preliminaries

We will construct a generator mapping2n bits into cn
bits. It is helpful to think ofc as a large constant, although
the results hold also ifc is a function ofn.

We will construct two generators: one will be good
against linear tests that involve a small number of output
bits (we call themsmall tests), and another is good against
linear tests that involve a large number of output bits (we
call themlarge tests). The final generator will be obtained
by computing the two generators on independent seeds, and
then XOR-ing their output bit by bit. In this way, we fool
every possible test.

The generator that is good against large tests is such that
every bit of the output is just the product of two bits of the
seed. We argue that the sum (modulo 2) oft output bits of
the generator has bias exponentially small int/c2, wherec,
as above, is the stretch of the generator.

Then we describe a generator that completely fools lin-
ear tests of size up to aboutn/c2, and such that every bit of
the output is the sum of three bits of the seed. Combined
with the generator for large tests, we get a generator in NC0

5

such that every linear test has bias2−O(n/c4).

5.2 The Generator for Large Tests

Let us call the bits of the seedy1, . . . , yn.
Let K be an undirected graph formed byn/(2c+1) dis-

joint cliques each with2c+1 vertices.K hasn vertices that
we identify with the elements of[n]. K has andcn = m
edges. Fix some ordering of the edges ofK, and let(aj , bj)
be thej-th edge ofK. Define the functionsq1, . . . , qm as
qj(y1, . . . , yn) = yaj

ybj
.

Claim 8 For every subsetS ⊂ [m], the functionqS(y) =∑
j∈S qj(y) is such that

|Pr
y

[qS(y) = 0]− 1
2
| ≤

(
1
2

)1+|S|/(2c2+c)

.
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The proof relies on the following two standard lemmas.
The first one from [7] is a special case of the Schwartz-
Zippel lemma [25, 28].

Lemma 9 ([7]) Let p be a non-constant degree-2 multilin-
ear polynomial overGF (2). Then1/4 ≤ Pr[p(x) = 0] ≤
3/4.

Lemma 10 Let X1, . . . , Xt be independent 0/1 random
variables, and suppose that for everyi we haveδ ≤
Pr[Xi = 0] ≤ 1− δ. Then

1
2

+
1
2
(1− 2δ)t ≤ Pr

[⊕
i

Xi = 0

]
≤ 1

2
+

1
2
(1− 2δ)t.

We can now prove claim 8.

PROOF OFCLAIM 8. We can seeS as a subset of the edges
of K. Each connected component ofK has2c2 + c edges,
so S contains edges coming from at least|S|/(2c2 + c)
different connected components. Lett be the number
of connected components. If we decompose the summa-
tion

∑
j∈S qj(y1, . . . , yn) into terms depending on each of

the connected components, then each term is a non-trivial
degree-2 polynomial, and thet terms are independent ran-
dom variables wheny1, . . . , yn are picked at random. We
can then apply lemma 10, where theXi are the values taken
by each of thet terms in the summation,δ = 1/4, and
t ≥ |S|/(2c2 + c). �

5.3 The Generator for Small Tests

Let A ∈ {0, 1}n×m be a matrix such that every row is
a vector in{0, 1}n with exactly three non-zero entries, and
let alsoA be such that every subset ofσ rows are linearly
independent. LetA1, . . . , Am be the rows ofA. We define
the linear functionsl1, . . . , lm asli(x) = Ai · x. Note that
each of these linear functions depends on only three bits of
the input.

Claim 11 For every subsetS ⊆ [m], |S| < σ, the function
lS(x) =

∑
j∈S lj(x) is balanced.

PROOF: We have lS(x) = (
∑

j∈S Aj) · x, and since∑
j∈S Aj is a non-zero element of{0, 1}n, it follows that

lS() is a non-trivial linear function, and therefore it is bal-
anced. �

Lemma 12 For everyc = c(n) = o(
√

n/(log n)3/4) and
for sufficiently largen there is a 0/1 matrixA with cn rows
andn columns such that every row has exactly three non-
zero entries and such that every subset ofσ = n/(4e2c2(n))
rows are linearly independent.

This is a standard probabilistic construction similar to
[3, 5, 4]. The proof is omitted.

5.4 Putting Everything Together

In order to obtain the generator, we takeG1 : {0, 1}n →
{0, 1}m to be a generator satisfying claim 8, andG2 :
{0, 1}n → {0, 1}m to satisfy lemma 12. Then we takeG :
{0, 1}2n → {0, 1}m defined byG(x, y) = G1(x)⊕G2(y)
to fool both small tests and large tests. We thus obtain

Theorem 13 For everyc and sufficiently largen, there is a
generator inNC0

5 mappingn bits intocn bits and sampling
anε-biased distribution, whereε = 2−n/O(c4).

5.5 Generator for k = 4

Whenk = 4 we want to replace the generator for small
sets by a generator which depends only on two bits. The
construction is essentially the one in [7].

The generator is obtained by taking a graphH on cn
edges, with girthΩ(log n/ log c) and lettingxi ⊕ xj be an
output bit, if(i, j) is an edge of the graph.

Let H be an undirected graph withn vertices, that we
identify with [n], havingcn edges and girthγ. Fix some
ordering of the edges ofH, and let (aj , bj) be thej-th
edge ofH. We define the linear functionsl1, . . . , lm as
li(x1, . . . , xn) = xaj

+ xbj
.

Claim 14 For every subsetS ⊆ [m], |S| < γ, the function
lS(x) =

∑
j∈S lj(x) is balanced.

PROOF: Since|S| < g, the subgraph ofH induced by the
edges ofS is a forest. ThereforelS(x) is non-zero linear
function. �

Lemma 15 ([18]) For everyc and for sufficiently largen
there are explicitly constructible graphsH with n vertices,
cn edges, and girthΩ((log n)/(log c)).

We thus obtain.

Theorem 16 For every c and sufficiently largen, there
is a generator in uniformNC0

4 mappingn bits into cn
bits and sampling anε-biased distribution, whereε =
n−1/O(c2 log c).

6 ε-biased generator for largek

In this section we construct anε-biased generator in
NC0

k, for largek, which outputsnΩ(
√

k) bits. More pre-
cisely,

Theorem 17 Let k be a positive integer. There exist anε-
bias generator inNC0

k from n bits to nb
√

kc·( 1
2−o(1)) bits

whose biasε is at most

ε = exp
(
−|n|

1−o(1)
2b
√

kc

)
.
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6.1 The Generator for Large Tests

We will assume through this sub-section thatn = p2.
Consider the following bi-partite graphG = (L,R,E)

where|L| = p, |R| =
(
p
d

)
. Identify the vertices ofL with

the numbers1, ..., p and the vertices ofR with
(
[p]
d

)
, the set

of all subsets of[p] of sized. The edges ofG are all pairs
(i, S) such thati ∈ [p], S ∈

(
[p]
d

)
andi ∈ S.

For a set of vertices,V , we denote withN(V ) the set of
neighbors ofV . For a vertexi let deg(i) = |N({i})|.

Claim 18 For any set of right verticesV ⊂ R we have that

|N(V )| ≥ d|V |
1
d

e .

PROOF: Any set oft left vertices has
(

t
d

)
right neighbors.

The result follows from the inequality

|V | ≤
(
|N(V )|

d

)
≤
(

e|N(V )|
d

)d

�
Our construction will assign a monomial of degreed, in

the input variables, to each edge. We think about the ver-
tices ofL as representing disjoint subsets of the input vari-
ables and each edge leaving such input set corresponds to a
monomial in its variables. The right vertices,R, correspond
to the output bits. Each output is the sum of monomials that
label the edges that fan into it. We now give the formal
construction.

Let X =
⊔p

i=1 Xi be a partition ofX = {x1, ..., xn} to
p disjoint sets each of sizep.

We assign the setXi to the i’th vertex of L. Let Mi

be the set of all multilinear monomials of degreed in the
variables ofXi. We have that

|Mi| =
(

p

d

)
>

(
p− 1
d− 1

)
= deg(i)

Therefor we can assign to each edge leavingi a different
monomial fromMi.

Each right vertex corresponds to an output bit. For a right
vertex j the j’th output is the sum of all monomials that
were assigned to the edges adjacent toj. Thus each output
is the sum ofd monomials each of degreed. Hence each
output depends ond2 input variables. Denote withfj the
j’th output. We now show that any large linear combination
has a small bias.

Lemma 19 In the notations above any linear combination
(overGF (2)) f =

∑
j∈J fj has bias at most

exp

(
−|J|

1
d

2d

)

PROOF: The proof is essentially the same as the proof of
claim 8 and follows from the following easy claims.

Claim 20 f can be written as the sum of at leastN(J)
polynomials of degreed, each in a different set of variables.

PROOF: The set of outputsJ , hasN(J) left neighbors. The
edges connecting the setJ to a neighbori ∈ N(J) are
labeled with polynomials of degreed in Xi. �

From the Schwartz-Zippel lemma [25, 28] we get

Claim 21 The bias of any polynomial of degreed is
bounded above by1

2d .

Thus according to lemma 10 we get that the bias off is
at most

1
2

(
1− 2

2d

)N(J)

≤ 1
2
·exp

(
−2N(J)

2d

)
≤ exp

(
−|J|

1
d

2d

)

This finishes the proof of lemma 19 �
This finishes the construction of the generator for large

tests. We now describe the generator for small tests.

6.2 The Generator for Small Tests

Similar to thek = 4, 5 cases this generator will out-
put only linear functions. We will have the property that
any small set of these linear functions is linearly indepen-
dent. This is now a standard construction that follows from
unique neighbor property of expanding graphs. We omit the
proof of the following lemma.

Lemma 22 Let t be positive integert and∆ = 10t. There
exist a mapping fromn bits tont bits such that every out-
put depends on∆ input variables, and such that any linear
combination of at most

√
n outputs is linearly independent.

6.3 Putting things together

We now prove theorem 17.

PROOF: Let k′ = (b
√

kc−5)2, n′ = b
√

n
2 c

2
. We have that

k > k′ + 10
√

k′, k′ > k − 12
√

k, n
2 ≥ n′ > n

2 −
√

2n.

Let X = {x1, ..., xn′}, Y = {y1, ..., y
′
n}. Let

f1(X), . . . , f(p
d)(X) be the outputs of the generator against

long tests with the parametersp =
√

n′, d =
√

k′. Let
h1(Y ), . . . , hn′k

′ (Y ) be the outputs of the generator for
small tests onY , given the parametert =

√
k′. Note that

n′
k′

>

(√
n′√
k′

)
=
(

p

d

)
.
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Our generatorG will output the functions

∀1 ≤ i ≤
(

p

d

)
gi(X, Y ) = fi(X) + hi(Y ).

Notice that as we have morehi’s thanfi’s we don’t use most
of thehi’s. Clearly, each output of the generator depends on
k′ + 10

√
k′ < k input variables.

From lemma 19,22 we get that the bias of any non trivial
linear combination of the outputs is at most

exp

(
−|n′|

1
2d

2d

)

Thus our generator takes2n′ ≤ n inputs and outputs

(
p

d

)
≥
(

e2n′

k′

)√
k′
2

= nb
√

kc·( 1
2−o(1))

and has an exponentially small bias. �

7 A degree2 generator

In this section we consider a variant of the problem pre-
sented in the paper. Suppose that we require that every out-
put bit is a degreek polynomial in the input bits. It is clear
that if we want the output to beε-biased, then the number
of output bitsm is at most the dimension of degreek poly-
nomials inn variables

∑s
i=k

(
n
i

)
= O(nk).

Clearly this is a relaxation of the problem described
above. In particular any upper bound here will imply an
upper bound forNC0

k. The problem is also of independent
interest, as low degree generators are “simple” in an intu-
itive sense.

In this section we construct a generator ofε-biased set
such that every output is a polynomial of degree2 in the
input variables. We show that unlike thek = 2 case we can
outputΩ(n2) bits. In particular we prove

Theorem 23 ∀1 ≤ m ≤ n there exists anε-bias generator
G = (g1, ..., gt) : {0, 1}n 7→ {0, 1}t, t = bn

2 c·m, such that
gi is a degree2 polynomial, and the bias of any non trivial
linear combination of thegi’s is at most2

n−2m
4 .

We begin by studying the bias of a degree2 polynomial,
overGF (2).

7.1 The Bias of Degree2 polynomials

Let P (x1, ..., xn) be a degree2 polynomial. P is also
called a quadratic form overGF (2). We say that a matrix
A representsP with respect to a basis ofGF (2)n, {vi}n

i=1,
if for every vectorv =

∑n
i=1 xi · vi we have thatP (v) =

xtAx (x = (x1, ..., xn)). Notice that we can always find an
upper triangular matrix that representsP ; let

P (a1, ..., an) =
∑

1≤i≤j≤n

αi,jaiaj

Define

A(P )i,j =
{

αi,j i ≤ j
0 i > j

ClearlyP (
∑n

i=1 ei · xi) = xtA(P )x andA(P ) represents
P with respect to the standard basis.

The bias of a quadratic form is bounded by the rank of
the matrix representing it as follows.

Theorem 24 The bias of a degree2 polynomialP is at
most

2−
(
1+

rank(A+At)
4

)
for any matrixA that representsP .

Theorem 24 shows that in order to outputm polynomi-
als of degree2, such that any non trivial linear combina-
tion of them is almost unbiased it suffices to find matri-
cesA1, ..., Am such that for any non trivial combination
of them, B =

∑m
i=1 αiAi (αi ∈ GF (2)), we have that

rank(B + Bt) is high.

7.2 Proof of theorem 24

The following claim is trivial.

Claim 25 P ≡ 0 iff there exist a symmetric matrix that
representsP w.r.t. some basisiff any matrix that represents
P is symmetric.

The proof of theorem 24 will follow from the following
claims.

Claim 26 For any quadratic formP on n variables, there
exist a basis ofGF (2)n ei, fi i = 1, ..., r andgj j = 1, ..., s
such that2r + s = n andn elements inGF (2), ai, bi i =
1, ..., r, cj j = 1, ..., s, such that for

v =
r∑

i=1

xiei +
r∑

i=1

xr+ifi +
s∑

j=1

x2r+jgj

we have

P (v) =
r∑

i=1

(aixi
2 + xixr+i + bixr+i

2) +
s∑

j=1

cjx2r+j
2

Such a basis is called “a canonical basis forP ”.

PROOF: See the proof of theorem 5.1.7 in [14]. �
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Claim 27 Let P be a quadratic form onn variables. Let
A representP with respect to the standard basis andD
representP with respect to the canonical basis. Then

rank(D) ≥ rank(A + At)
2

PROOF: Let B be the matrix whose columns are
e1, ..., er, f1, ..., fr, g1, ..., gs written w.r.t. the standard ba-
sis. We have that

∀x ∈ GF (2)n xtDx = xtBtABx.

In other words

∀x ∈ GF (2)n xt(D −BtAB)x = 0.

Therefor there exist a symmetric matrixS such that

D −BtAB = S,

or
D = Bt(A + (B−1)tS(B−1))B.

As (B−1)tS(B−1) is a symmetric matrix we get by the next
claim (claim 28) that

rank(D) = rank(A + (B−1)tS(B−1)) ≥ rank(A + At)
2

.

�

Claim 28 For upper diagonal matrixA with zeros on the
diagonal, and any symmetric matrixS we have that

rank(A + S) ≥ rank(A + At)
2

whereAt is the transpose ofA.

PROOF: Let r = rank(A + S) = rank(At + S). Then

rank(A + At) ≤ rank(A + S) + rank(At + S) = 2r

�
PROOF OF THEOREM24. Clearly the bias ofP does not
change if we calculate it w.r.t. to a canonical basis,{vi}n

i=1,
for P . In such a basis, forv =

∑n
i=1 xi · vi, we have that

P (v) =
r∑

i=1

(aixi
2 + xixr+i + bixr+i

2) +
s∑

j=1

cjx2r+j
2

First notice that if for some1 ≤ j ≤ s cj 6= 0 thenP is
unbiased. Otherwise, we note that for everyi the bias of
(aixi

2 +xixr+i + bixr+i
2) is at most14 . Therefore accord-

ing to lemma 10 we get the bias ofP is at most
(

1
2

)r+1
. As

we assume that∀j cj = 0 we see that

r ≥ rank(D)
2

The theorem now follows from claim 27. �

7.3 The generator

In this subsection we give a construction of a linear space
of matrices with the property that for every non zero matrix
in the space,A, we have thatrank(A + At) is high.

Such a construction was first given by Roth [24], and
later simplified by Meshulam [21] (see also [26]).

Theorem 29 For any positive natural numbersn ≥ m
there existt = bn

2 c · m matricesA1, ..., At ∈ Mn(GF (2)
such that for every non trivial combination of themB =∑t

i=1 αiAi we have that

rank(B + Bt) ≥ n− 2m

We now prove theorem 23.
PROOF: Let A1, ..., At be the matrices guaranteed by the-
orem 29. Definegi(x) = xtAix. Consider any non trivial
linear combination

g(x) =
t∑

i=1

αigi(x) = xt

(
n∑

i=1

αiAi

)
x

According to theorem 29, we have thatrank(g) ≥ n− 2m.
Theorem 24 shows that the bias ofg is at most2

n−2m
4 . �

8 Conclusions

Several questions remain open.
Even for the casek = 3, we only know how to break the

generator assuming that the output length is a sufficiently
large constant multiple than the seed length. It is not clear
whether there is a linear test, or even a polynomial time
algorithm, that breaks the casek = 3 when, say,m = n+1.

It is still open whether there can be anε-biased generator
with negligibleε in the casek = 4. We conjecture that this
is not the case for sufficiently large linear stretch, but we do
not have a strong feeling about what happens for very small
stretch.

The main open question is whether our generator for the
casek = 5 can be broken by a polynomial time algorithm
and, in general, whether polynomial time algorithms can
break all NC0 generators.

Another important open problem which may be more ac-
cesible it to understand the right asymptotics forε-biased
generators for largek. It is tempting to conjecture that ei-
ther the upper boundnO(k) or the lower boundnΩ(

√
k) are

actually tight.
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[13] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396, 1999.

[14] J. W. P. Hirschfeld, Projective Geometries over Finite
Fields, Oxford University Press, 1979.

[15] R. Impagliazzo and M. Naor. Efficient cryptographic
schemes provably as secure as subset sum.Journal of
Cryptology, 9(4):199–216, 1996.

[16] T. Johansson and F. Jonsson. Improved fast correlation
attacks on stream ciphers via convolutional codes. In
Proceedings of EUROCRYPT’99, 1999.

[17] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, fourier transform and learnability.Journal of
the ACM, 40(3):607–620, 1993.

[18] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan
graphs.Combinatorica, 8:261–277, 1988.

[19] C. J. Lu and O. Reingold and S. Vadhan and A.
Wigderson Extractors: Optimal Up to Constant Fac-
tors. To appear in proceedings of the 35th Annual
symposium on the theory of computing (STOC).

[20] M. Luby and C. Rackoff. How to construct pseudo-
random permutations from pseudorandom functions.
SIAM Journal on Computing, 2(17):373–386, 1988.

[21] . R. Meshulam. Spaces of Hankel matrices over finite
fields, Linear Algebra Appl.218, 73–76, 1995.

[22] E. Mossel, R. O’Donnell and R. Servedio (2003)
Learning Juntas. To appear in proceedings of the
35th Annual symposium on the theory of computing
(STOC).

[23] J. Naor and M. Naor. Small-bias probability spaces:
efficient constructions and applications,SIAM Journal
on Computing, 22(4):838–856, 1993.

[24] R. Roth. Maximum rank array codes and their appli-
cation to crisscross error correction,IEEE Trans. on
Info. Th.37,328–336, 1991.

[25] J. T. Schwartz. Fast probabilistic algorithms for veri-
fication of polynomial identities.Journal of the ACM,
27(4):701–717, 1980.

[26] A. Shpilka. On the rigidity of matrices. Manuscript,
2002.

[27] U. Vazirani. Randomness, Adversaries and Computa-
tion. PhD thesis, University of California, Berkeley,
1986.

[28] R. Zippel. Probabilistic algorithms for sparse poly-
nomials. In Symbolic and algebraic computation
(EUROSAM ’79, Internat. Sympos., Marseille, 1979),
pages 216–226. Springer, Berlin, 1979.

10


