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The Gaussian Isoperimetric problem

» In Euclidean space: among all sets of volume a, the ball of
volume a minimizes the surface area (Steiner 1838, Levy 1919
etc.)

» The Gaussian analog of this result is due to B. Tsirelson and
V. Sudakov (1974) and independently due to C. Borell (1975).

» The inequality states that if A C R" and
B={xe€R":x-a>b} CR"is a half-space of the same
gaussian measure (y,(A) = v,(B)) then:

» v (A) > v, (B) where «, is the Gaussian surface area.

T (A) = liminf ~(30(A)—n(A)). A= {y - chly, A) < e}

e—0

» In other words: ;5 (A) > I(7a(A)), where I(x) := p(®~1(x))
and ¢, ® are the Gaussian density, CDF).
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» Slow progress since the 70s.

» Erhard (86): Uniqueness for nice sets.

» Carlen and Kerce (01): Uniqueness for general sets.

» Assume 7y,(A) = 0.5.

» Cianchi, Fusco, Maggi, and Pratelli (2011): If
Y (A) < I(7(A)) + & then there exists a half space B with
Ya(AAB) < c(n)st/2.

» No bound on ¢(n).

» M, Neeman (12): If 4,7 (A) < I(A) + J then there exists a half
space with 7,(AAB) < Clog='/%(1/4).
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» Analyzing a function version of the inequality.
» Utilizing the semi-group flow.
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Bobkov proved a functional version of the inequality:

» Bobkov: For any smooth function f : R” — [0, 1] of bounded
variation,

I(Ef) <E7/I2(f) + || VF]]3.

» Since /(0) = /(1) = 0 then one can show that if A is a "nice
set” then:
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Ledoux’ proof of Bobkov's inequality

» Consider the Ornstein-Uhlenbeck semigroup:

(Per)() = [ Fle e VI— e y) dual)

v

look at: (t) := E\/I2(Pf) + [V Pf|2.
When t = 0: 4(0) = E\/72(F) + V|2
and when t = oco: 1(c0) = I(Ef).
Suffices to prove 1); is decreasing.
Nice properties that allow to establish ¢’(t) < 0:
> = -1
> Integration by parts [ —fLg dvy, = [(Vf,Vg)dy, (where
Lf(x) = Af(x) — (x, Vf) is the generator).
> etc.
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v

v

» Then
w(he)||H(h
0 (1+ IVhel[?) ;
where H(h;) is the Hessian matrix of h; and || - ||¢ denotes the

Frobenius norm.

d(f) =0 = h;islinear t >0 = P:f is Gaussian Vt.

v

v

f =14 and §(f) = 0 by limiting arguments f is a half-space.

9/18
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Proof Cartoon

» To demonstrate the main ideas of the proof assume a stronger
result than Carlen and Kerce:

()= [ EIHROI ot

(he = @1 o (Pef), O(f) = E\/I2(f) + V]2 — I(Ef).)
If 6(f) < €2 then there exists a t € [0, €] with |[H(h:)||% <.

Second order Poincare inequality: For any twice-differentiable
f e Ll(R" ),

v

v

minE(f(x) - a-x — b)* < E|H(f)[%.
a,

v

= E(h(x) —a-x—b)><e = f, is close to a Gaussian.

v

Now apply P;l to obtain that f is close to Gaussian.
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» Main challenge: prove that there exists a t, such that for
t>t.—1and f with Ef <1/2 it holds that:

<;0(/71‘)‘|H(/7t)H2
) B o) >

» Given (*) , if §(f) < € then

t hIH(h)||2
/ E o(he)||H( 1;)|3|F2 dt < c.
to1 (L+[[Vhe|2)3/

Therefore there exists t < t* such that

(55 (E(IH(h)7)) log ™ -

_ 1
E(IH(h)IE) < e 0g¥ L 12(E)

» So the main challenge is to prove (*).
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Almost surely known.
Proof sketch: Hermite Expand: f =" by Ha.

min, s E(f(x) — a-x — b)? = 2 jal>2 b2al.

g
E|H(F)% = ZE(aX,axj )

= Z Z b2ajajal + Z Z b2ai(a; — 1)a!

vV VvYyye.y

i#j {o:aj,0j>1} i {oca;>2}
> Z b2al = mlnE(f( )—a-x— b)2
|or|>2
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Bad news: P; ! not bounded!

The fix: if f is smooth or f = 14 has small boundary then

cannot have too much mass on high coefficients.
E.g. by Ledoux (94): Ef(f — P:f) < c\/tE|VF|.
If E[|Vf|| > 10 then

8(F) =E\/I2(F) + ||[VF||2 — I(Ef) > E||Vf| — I(Ef) > 9.

Similar arguments for sets.

14/18



The main challenge

» Need to prove that for f taking values in [0,1] and Ef <1/2:

(x) E (f(f‘)‘uiﬁg))ﬂg > (&) (E(IH(hIR) )’

15/18



The main challenge

» Need to prove that for f taking values in [0,1] and Ef <1/2:
p(he)[H(he) |1 21)*
) E > c(Ef) (E(IH(h)IIF))
> For this, using the reverse log Sobolev inequality we prove
that for t large enough:

V2e !

1
(ex) [[Vhe| <l as., |[[VE] < T emtyler

15/18



The main challenge

» Need to prove that for f taking values in [0,1] and Ef <1/2:

(x) E (f(f‘)‘uiﬁ;))ﬂg > (&) (E(IH(hIR) )’

> For this, using the reverse log Sobolev inequality we prove
that for t large enough:

V2et | 1
og
\/7
» We then use (**), the concavity of /, the reverse—HoIder
inequality, and reverse hyper-contractivity to show that

(5 %) E(p(he)[H(he)[F) > cl®(EF) (B H(he)||F)?

(ex) [[Vhe| <Tas. . [[VA] <

15/18



The main challenge

» Need to prove that for f taking values in [0,1] and Ef <1/2:
p(he)[H(he) |1 2\*

E > c(Ef)(E(||H(h

) (14 [|[Vhe|[2)3/2 = ( )< (IH( t)”F))

> For this, using the reverse log Sobolev inequality we prove
that for t large enough:

V2et | 1
og
\/7
» We then use (**), the concavity of /, the reverse—HoIder
inequality, and reverse hyper-contractivity to show that

(5 %) E(p(he)[H(he)[F) > cl®(EF) (B H(he)||F)?

» Finally using almost all of the tools before and additionally
concentration of measure and Hanson-Wright inequalities we
prove that for t large enough

(5 %) (E[H(he)lI})Y? < V/log(1/(EF))

(ex) [[Vhe| <Tas. . [[VA] <
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Combining the pieces

» By (**) for some t. and t > t,:

p(he)[[H(he)lIE
L+ [Vh?)? =

cE((he) [ H(he)IIF)

> By (¥**) for t > t,:
E((he)|[H(he)lIF) > c(EF) (E[|H(he)llF)* -

» Sadly - the square is outside the expectation.

» However by Holder's inequality

E(IHIE) < (BIHkIF) " EIHA)I) 2

and therefore by (****) the upper bound on E| H(h;)||F yields
an upper bound on E ([|H(h¢)||%).
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Open Problems

» Prove that if f = 1,4 satisfies §(f) < 0 then there exists a half
space B such that v,(AAB) < C§'/2.
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Open Problems

» Prove that if f = 1,4 satisfies §(f) < 0 then there exists a half
space B such that v,(AAB) < C§'/2.

» Analyze equality case and robustness of isoperimetric
problems for other log-concave measures.
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Current and Future Work (M+Neeman)

» Borell showed that if v,(B) = v,(A) and B is a half-space
then
(+) E[1aP:1a] < E[1gP:lp]
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Current and Future Work (M+Neeman)

v

Borell showed that if v,(B) = 7,(A) and B is a half-space
then
(+) E[1aP:1a] < E[1pP:1g]

v

Say something about the proofs.

v

Problem: Are half-spaces the only optimizers?

Problem: Is there a robust version?
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Current and Future Work (M+Neeman)

v

Borell showed that if v,(B) = 7,(A) and B is a half-space
then
(+) E[1aP:1a] < E[1pP:1g]

v

Say something about the proofs.

v

Problem: Are half-spaces the only optimizers?
Problem: Is there a robust version?
A’s: Yes, Yes (M + Neeman, 2012-3).

v

v
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