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Combinatorial Statistics  

“Combinatorial Statistics”:  
 
Rigorous Analysis of Inference Problems where: 
 
Estimating a discrete parameter (e.g. graph, order) 
 
Explicit Sampling Complexity Bounds 
 
Explicit Computational Complexity Bounds 
 
Interest in both: Positive Results & Negative Results 
 
Interdisciplinary (Stat, ML, Applied Prob., TCS, PAC ..) 



Why Negative Results?  

“I am not interested in negative science” (academy 
member when understanding sampling lower bounds) 
 
Bible Codes 
 
“The Duke University Scandal” 
 
“Retractions in the medical literature: How many 
patients are put at risk by flawed research”, Steen 10.  
 
Ioannidis’ : Why Most Published Research Findings Are 
False[ 
 
 
 
 



Lecture Plan 

Negative results:  
 
On the usefulness of MCMC diagnostics.  
 
Is it possible to recover graphical models?  
 
Bayesian MCMC in Phylogeny mixtures.  
 
Positive Results:  
 
Recovering Phylogenetic Mixtures.  
 
Recovering the Mallows model 
 



ON THE COMPLEXITY OF 
MARKOV CHAIN CONVERGENCE 

Andrej Bogdanov 
Chinese University of Hong Kong 

With Nayantara Bhatnagar  
UC Berkeley 



Markov Chain Monte Carlo 

volume estimation 

counting matchings 

Markov Chains typically easy to design, 
but guaranteeing convergence is difficult 



Convergence Diagnostics 
•  A method to determine t such that Pt(X0, ⋅) is “sufficiently close” to π.  

 - MCMC in Practice, Gilks, Richardson & Spiegelhalter 

•   

Are we there yet? 



Convergence Diagnostics in the Literature 

Visual inspection of functions of samples. 
- MCMC in Practice, Gilks, Richardson & Spiegelhalter 
 
[Raftery-Lewis] 
Bounding the variance of estimates of quantiles of functions of parameters. 

[Gelman-Rubin] 
Convergence achieved if the separate empirical distributions are 
approximately the same as the combined distribution. 

[Cowles-Carlin] 
•  Survey of 13 diagnostics designed to identify specific types of 
convergence failure. 
•  Recommend combinations of strategies – running parallel chains, 
computing autocorrelations. 

 



Diagnostic tools 

BOA 

BOA is an R/S-PLUS program for carrying out 
convergence diagnostics and statistical and 
graphical analysis of Monte Carlo sampling output. 

http://www.public-health.uiowa.edu/boa/ 



•  It is known that these diagnostics are not always 
accurate 

• However, the inherent difficulty in designing such 
tools has not been studied 

Our objective 

We point out some complexity 
theoretic limitations of Markov 
Chain Monte Carlo diagnostic tools 



The model 

input: a circuit C describing the transition  
function over state space {0, 1}n  

C(state, randomness) = new state 

a convergence time bound t 

a variation distance bound d 

problem: does the MCMC C approximately reach 
variation distance d after t steps? 

Note: Diagnostics can run C but also do many 
other things. 



1. The PSPACE barrier 

configuration graph of a Turing machine 

accept reject 



1. The PSPACE barrier 

configuration graph of a PSPACE Turing  
machine (that always halts)  

accept reject 

C(u, . ) 



1. The PSPACE barrier 

In general it is PSPACE hard to get even 
an exponential approximation of mixing time 

accept reject 

start 

tight as mixing time is computable in PSPACE 



• What if we know the chain mixes somewhat fast, 
but we want a more precise estimate? 

• This captures cases when provable bound is weak, 
but we suspect MCMC does better in practice 

2. The SZK barrier 

promise: mixing time is at most n2 

question: is it actually at most 2n? 



• An SZK hard problem [Sahai and Vadhan]: 

2. The SZK barrier 

input: two distributions D0 and D1 over {0, 1}n 

described by sampling circuits 

problem: are they close or far apart in variation 
distance? 

Belief: Problem is computationally hard. 
Connections to Crypto. 



• The hard Markov Chain: 

2. The SZK barrier 

with probability 1 – δ, retain previous state 
with probability δ/2, resample from D0  

with probability δ/2, resample from D1  

stationary distribution =  (D0 + D1) 
1 
2 

distance at time t =  (1 – δ)t dist(D0, D1) 
1 
2 



• For example, given a Markov Chain that is known to 
converge in time n2, it is SZK-hard to tell if it is 

2. The SZK barrier 

within 1/3 of stationary at time n, or 
not within 2/3 of stationary at time 2n. 

• Conversely, given a starting 
state s, detecting 
approximate convergence 
is an AM ∩ coAM problem 

AM 
(NP) 

coAM 
(coNP) 

SZK 

P 



•  It is coNP-hard to tell if the Markov Chain is within 
distance to stationary 

3. The coNP barrier 

promise: mixing time is at most n6 

from any start state 
 

at most 1/3 at time n, from every start state, or 

at least 2/3 at time 2n, from some start state 

… and it can be done in coAM 



• Our constructions give evidence that detecting 
Markov Chain convergence cannot be automated 

• To understand the realistic limitations, it could be 
good to have more examples and tighter bounds 

• Open question: What if the stationary distribution 
is known (efficiently computable)? 

Conclusion 



The complexity of distinguishing 
Markov random fields 

With �

Andrej Bogdanov�
Tsinghua University and Chinese University of Hong Kong 

Salil Vadhan 
Harvard University 



Model reconstruction�



Combinatorial statistics on networks �

• In many applications, the system represents 
interactions in a network�

• Can we reconstruct the network from 
observations at the nodes? �

biology sociology communications 



Markov random fields �

• A common model for stochastic networks �

bounded degree graph G = (V, E) 

weight functions ψe: Σ2 → R≥0 
for every edge e  

1 

2 

3 

4 

ψ
(1

, 3
) 



Markov random fields �

• A common model for stochastic networks �

nodes v are assigned  
values av in alphabet Σ 

Pr[σ] ~ Π(u, v) ∈ E ψ(u, v)(au, av)  

bounded degree graph G = (V, E) 

distribution over states 
σ ∈ ΣV given by  

weight functions ψe: Σ2 → R≥0 
for every edge e  

1 

2 

3 

4 

ψ
(1

, 3
)( 

  ,
   

) 



Reconstruction task for Markov random fields �

• Suppose we can obtain independent samples 
from the Markov random field �

• Given observed data at the nodes, is it possible 
to reconstruct the model (network)? �



Hidden nodes�

1 

2 

3 

4 

ψ
(1

, 3
)( 

  ,
   

) 
• In some applications only some of the nodes can 

be observed�

visible nodes W ⊆ V 
 
Markov random field over 
visible nodes is  
 

σW = (σw : w ∈ W) 

• Is reconstruction still possible? �

• What does “reconstruction” even mean?�



Reconstruction versus distinguishing �

• We are interested in computational obstacles for 
efficient reconstruction�

• Reconstruction is related to learning.�

• To provide evidence for hardness, we look at the 
easier problem of distinguishing models �



Distinguishing problems�

• Let M1, M2 be two models with hidden nodes �

• Can you tell if M1 and M2 are statistically close or 
far apart (on the visible nodes)? �

• Assuming M1 and M2 are statistically far apart 
and given access to samples from one of them, 
can you tell where the samples came from? �

PROBLEM 2 

PROBLEM 1 



Problems 1 and 2 are intractable (in the �
worst case) unless NP = RP 

Main result �

• Conversely, if NP = RP then distinguishing (and 
other forms of reconstruction) are achievable �



Reduction to circuits �

• Markov random fields can simulate the uniform  
distribution UC over satisfying assignments of a 
boolean circuit C�

• We reduce problems 1 and 2 to questions about 
circuits:�

–  Can you tell if the distributions UC0 and UC1 �
are statistically close or far apart? �

–  If UC0 and UC1 are statistically far apart and given 
samples from one of them, can you tell which one? �



 

1/#SAT(C), if  C(x) = TRUE 
0, if  C(x) = FALSE 

prUC(x) =  { 



Hardness of distinguishing circuits�

• Assume you have an algorithm A such that �

–  If the samples come from another distribution, A can 
behave arbitrarily�

• We use A to find a satisfying assignment for any 
circuit C: {0, 1}n → {0, 1} �

A 
C0, C1 

samples from Cb �
b 



A 
C0, C1 

samples: 0, 0, ... �

C0(x1, x2, ..., xn) = C(x1, x2, ..., xn) 
C1(x1, x2, ..., xn) = C(x1, x2, ..., xn) 

value of x1 in some �
satisfying assignment of C�

visible inputs: x1 hidden inputs: x2,..., xn 

CLAIM 

Hardness of distinguishing circuits�

–  Proof reminiscent of argument that NP ∩ coNP has �
NP-hard promise problems [Even-Selman-Yacobi]�



A possible objection �

• The “hard” models M1, M2 describe distributions 
that are not efficiently samplable �

• But if nature is efficient, we never need to worry 
about such distributions! �



Two Models of a Biologist 
 

•  The Computationally Limited 
Biologist: Cannot solve hard 
computational problems, in particular 
cannot sample from a general G-
distributions. 

•  The Computationally Unlimited 
Biologist:  
 Can sample from any distribution.  

 
•  Related to the following problem:  

 Can nature solve computationally 
hard problems?   

 

From Shapiro at Weizmann 



Distinguishing problem for samplable distributions�

• If M1 and M2 are statistically far apart and given 
access to samples from one of them, can you tell 
where the samples came from, assuming M1 and 
M2 are efficiently samplable? �

• Theorem�

– We don’t know if this is tight �

PROBLEM 3 

Problem 3 is intractable unless 
computational zero knowledge is trivial 



Based on joint work with  
S, Roch (UCLA) 

Phylogenetic Mixtures:  
The good & the bad 



Of Mice and Men 



Broadcasting DNA 
(Probabilistic Point of View) 

30mya 

20mya 

10mya 

today 



heterogeneous data 
•  phylogenetic mixtures – definition by picture: 

•  special case – “rates-across-sites” 
–  trees are the same up to random scaling 
–  in this talk, will focus on two-scaling case 
–  can think of scaling as “hidden variable” 

•  biological motivation  
-  heterogeneous mutation rates 
-  inconsistent lineage histories 
-  hybrid speciation, gene transfer 
-  corrupted data 

T1 
+α2 α1 +α3 +... 

T2 T3 

+ 

SLOW FAST 



but, on a mixture… 

+ = 



why are mixtures problematic?  
•  identifiability – does the distribution at the leaves 

determine the α’s and T’s? 
-  negative results: e.g. [Steel et al.’94], [Stefankovic-

Vigoda’07], [Matsen-Steel’07], etc. 
-  positive results: e.g. [Allman, Rhodes’06,’08], [Allman, 

Ane, Rhodes’08], [Chai-Housworth’10], etc. 

•  algorithmic – assuming identifiability, can we 
reconstruct the topologies efficiently? 
–  can mislead standard methods;  
–  ML under the full model is consistent in identifiable 

cases;  

T1 
+α2 α1 +α3 +... 

T2 T3 



The Pitfalls of Generic Techniques 
for Mixtures 

  Note: Algorithm design is needed for guarantees with realistic 
sequence length and running time. 

  Currently generic Techniques (Bayesian, ML, Parsimony) have no 
known guarantees in terms of running time / sequence length.   

  In fact in [M-Vigoda’ (Science 05, Ann. App. Prob. 06)]: Bayesian 
techniques are misleading for mixtures (assuming no-mixture). 



a new site clustering approach 

new results [M-Roch, 2011] – we give a 
simple way to determine which sites come 
from which component 

– based on concentration of measure in large-
tree limit 



site clustering 
•  ideally, guess which sites were produced 

by each component  

  scaling is “hidden” but we can try to infer it 
– to be useful, a test should work with high 

confidence 
trc 

tra 

tab 

ta3 

tb1 tb2 tc4 tc5 

r 

a 

b 

1 2 3 4 5 

c 

A T T T A 
A G C G G 
C A C A C 
G C C C C 
C C C T C 

SLOW 

FAST 



leaf agreement 
•  a natural place to start - impact of scaling on leaf agreement  

 
–  one pair of leaves is not very informative 
–  we can look at many pairs 

•  we would like C to be concentrated: 

–  large number of pairs 
–  each pair has a small contribution 
–  independent (or almost independent) pairs 
–  nice separation between SLOW and FAST 

! 

C = " sa = sb{ }
(a,b )#R$L2
%

a b c d 



64 leaves 



128 leaves 



256 leaves 



512 leaves 



but the tree is not complete… 
•  lemma 1 – on a general binary tree, the set of all 

pairs of leaves at distance at most 10 is linear in n 

–  proof: count the number of leaves with no other leaves at 
distance 5 

•  lemma 2 – in fact, can find a linear set of leaf pairs 
that are non-intersecting 

–  proof: sparsify above 

•  this is enough to build a  
    concentrated statistic 

! 

ˆ C = " sa = sb{ }
(a,b )# ˆ R $L2

%



but we don’t know the tree… 
•  a simple algorithm – cannot compute exact distances but can tell 

which pairs are more or less correlated 

 
–  find “close” pairs 
–  starting with one pair, remove all pairs that are too close 
–  pick one of the remaining pairs and repeat 

•  claim – this gives a nicely concentrated  
variable (for large enough trees) 

–  large number of pairs 
–  independent (or almost independent) pairs 
–  nice separation between SLOW and FAST 

! 

ˆ C = " sa = sb{ }
(a,b )# ˆ R $L2

%



site clustering + reconstruction 



summary 



Efficient sorting of the Mallows model 

Based on joint work with  
Mark Braverman (Princeton) 
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Example Consensus Ranking, Rearrangements and the Mallows Model 

  Problem 1: Consider a sorting problem where for each query comparing two elements x 
and y:  

  Return correct answer with probability ½+ ε 
  Independently for each query.  
  Can query each pair as many times as we want.  
  How many queries are needed to find correct order with probability 0.9999? 
  Answer: Feige, Raghavan, Peled and Upfal. 

  Problem 2: Consider a sorting problem where for each query comparing two elements x 
and y.  

  Return correct answer with probability ½+ ε 
  Independently for each query. 
  Each pair of elements can be queried only once.  
  What can we do? 
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Example Consensus Ranking, Rearrangements and the Mallows Model 

  Problem  3 Given a set of permutations (rearrangements) {π1, π2, ... πN} find the consensus 
ranking (or central ranking) 

 for d = distance on the set of permutations of n objects 
 Most natural is dK which is the Kendall distance. 
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The Mallows Model – A distribution on rearrangements 

  Exponential family model in β:  

  P( π | π0) = Z(β)-1 exp(-β dK(π,π0)) 

   β ´ 0  : uniform distribution over permutations 
   β > 0 :   π0 is the unique mode of Pβ,π0 

  This is a re-arrangement model with cost proportional to # of wrong 
inversions. 

  ML estimation is exactly the same as consensus ranking! 

  Theorem [Meila,Phadnis,Patterson,Bilmes 07] 
     Consensus ranking (i.e ML estimation of π0 for constant θ) can be solved 

exactly by a branch and bound (B&B) algorithm. 

  The B&B algorithm can take (super-) exponential time in some cases   

  Seem to perform well on simulated data. 
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Related work 

ML estimation 
  [Fligner&Verducci 86] introduce generalized  
Mallows model, θML estimation 
  [Fligner&Verducci 88] (FV) heuristic 
 for π0 estimation 

Consensus ranking 
  [Cohen,Schapire,Singer 99] Greedy algorithm (CSS) 

  + improvement by finding strongly connected components 
  + missing data (not all πi rank all n items) 

  [Ailon,Newman,Charikar 05] Randomized algorithm  
  guaranteed 11/7 factor approximation (ANC) 

  [Mathieu, 07] (1+ε) approximation, time O(n6/ε+2^2O(1/ε)) 
  [Davenport,Kalagnanan 03] Heuristics based on edge-disjoint cycles 
  [Conitzer,D,K 05] Exact algorithm based on integer programming, better 

bounds 



Efficient Sorting of Mallow’s model of 
rearrangements  (problem 3) 

•   [Braverman-Mossel-09]: 

•  Given r independent samples from the Mallows 
Model, find ML solution exactly! in time nb,where  

•  b = 1 + O((β r)-1),  
•  where r is the number of samples  
•  with high probability (say ¸ 1-n-100) 

 



Sorting with nois (Problem 2) 

•  [Braverman-M-09]: In raking from ranking comparisons 
without repetitions find ML order in O(n log n) queries and 
time nr where r=O(1/ε6)  time. 

•  Proof Ingredient 1:  “statistical properties” of generated 
permutations πi in terms of the original order π0 : 

•  With high probability: ∑x |πi(x)-π(x)| = O(n),  
           max |πi(x)-π(x)| = O(log n) 

 
 

• Additional ingredient: A dynamic programming  
algorithm to find π given a starting point where each 
elements is at most k away with running time O(n 26k) 



Sorting the Mallows model (Problem 3) 

•  [Braverman-M-11]: Optimal order can be found in polynomial 
time and O(n log n) queries. 

•  Proof Ingredient 1:  “statistical properties” of generated 
permutations πi in terms of the original order π0 : 

•  With high probability: ∑x |πi(x)-π(x)| = O(n),  
           max |πi(x)-π(x)| = O(log n) 

 
 

• Additional ingredient: A dynamic programming  
algorithm to find π given a starting point where each 
elements is at most k away with running time O(n 26k) 



The algorithm assuming small deviation 
•  Insert elements in some random order a1, a2, 

…, an. For every k · n, there is an optimal 
order πk and the original order Ik.  

•  Using union bound, for each k we have  
(*) max | i - πk(i)| = O (log n). 

•  Find the πk by inserting the elements one by 
one.   

πk πk+1 π’= π k+ak+1 know 

guess 
goal 



•  The problem now: Find the optimal ordering πk+1 such 
that each element is at most d = O (log n) away from its 
position in π’. 

•  Use dynamic programming: 

π’                                                                   

The algorithm assuming small deviation 

πk+1                                                                   

d 

optimally sorted 

•  For each interval                     there are <24d “variations”. 

•  A total of poly(n) variations, can store all of them.  



•  Store optimal permutations of all variations 
on the following intervals: 

•  A total of  Õ(24d n) storage.  
•  Work from shorter intervals to longer.  

The algorithm assuming small deviation 

πk+1                        n=2log n                            
n/2 n/2 

1 1 1 1 1 1 1 1 1 1 
2 2 2 2 



π’                    2k                            

d 

2k-1 

•  Each of the shorter intervals has been pre-sorted. 
•  Thus the cost of doing all intervals on level k is 
#intervals × #checks × #cost/check = (n/2k) 24d × 22d × 22k. 

•  Thus, total running time is bounded by O(26d n2).  

Building up: 

πk+1                                                22d 
possibilities 



Conclusion   

“Combinatorial Statistics”:  
 
Hard to prove results 
 
But do prove them 
 
Know what can and cannot be done  
 
Many Other problems are waiting.  
 
THANK YOU!!  


