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Talk Plan  
•  Probability and Gaussian Geometry:  

– Non linear invariance for low influence functions 
–  Gaussian Geometry and “Majority is Stablest”.  

•  Quantitative Social choice  
– Qauntitative Arrow theorem.  

•  Approximate Optimization 
–  Unique Games and hardness of Max-Cut 
–  General Optimization  

•  More on Gaussian Geometry.  
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Lindeberg & Berry Esseen 
•   Let Xi = +1/-1 w.p ½ , Ni ~ N(0,1) ind.  
•  f(x) = ∑i=1n ci xi with ∑ ci2 = 1.  
•  Thm: (Berry Esseen CLT):  
•  supt |P[f(X) ≤ t] – P[f(N) ≤ t]| ≤ 3 max |ci | 
•  Note that f(N) = f(N1,...,Nn) ~ N(0,1).  
•  Lindeberg pf idea: can replace Xi with Ni 

“one at a time” as long as all coefficients 
are small.  

• Q: can this be done for other functions f? 
e.g. multi-linear polynomials?  3 



Some Examples 
• Q: Is it possible to apply Lindeberg principle to 

other functions f with small coefficients to show 
that f(X) » f(N)?   

•  Ex 1: f(x) = (n3/6)-1/2 ∑i<j<k xi xj xk  
•  Okay: Limit is N3 – 3N 

•  Ex 2: f(x) = (2n)-1/2 (x1-x2) (x1 + .... + xn)  
•  Not OK 
•  For X: P[f(X) = 0] ≥ ½.  
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Invariance Principle 
•  Thm (MOO := M-O’Donnell- 

Oleszkiewicz): 
•  Let f(x) = ∑S cs Xs be a multi-linear of 

degree k with ∑ cS2  = 1 (XS = ∏i 2 S xi) 
•  Ii(f) := ∑S : i ∈ S cS2 ,  ±(f) = maxi Ii(f) 
•  Then:  
•  supt |P[f(X) ≤ t] – P[f(N) ≤ t]| ≤ 3 k ±1/8d 

• Works if X has 2+ε moments +  
 other setups.  5 



The Role of Hyper-Contraction 
•  Pf Ideas: 
•  Lindeberg trick (replace one variable at a time) 
•  Hyper-contraction allows to bound high moments 

in term of lower ones.  
•  Key fact:  A degree d polynomial S of hyp. 

contract. variables satisfies ||S||q · C(q)d ||S||2 
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An Invariance Principle  
•  Invariance Principle [M+O’Donnell+Oleszkiewicz(05)]:  

•  Let p(x) = ∑0 < |S| · k aS ∏i 2 S xi be a degree k multi-
linear polynomial with |p|2 = 1 and Ii(p) ≤ δ for all i. 

•  Let X =  (X1,…,Xn) be i.i.d. P[Xi = ± 1] = 1/2 . 
          N = (N1,…,Nn) be i.i.d. Normal(0,1).     

•  Then for all t: 
|P[p(X) · t] -  P[p(N) · t]| ·  O(k δ1/(4k)) 
(Proof works for any hyper-contractive random vars). 



Invariance Principle – Proof Sketch  

•  Suffices to show that 8 smooth F  (sup |F(4)| · C ),  
E[F(p(X1,…,Xn)] is close to E[F(p(N1,…,Nn))]. 



Invariance Principle – Proof Sketch  

• Write: p(X1,…,Xi-1, Ni, Ni+1,…,Nn) = R + Ni S 
•              p(X1,…,Xi-1, Xi, Ni+1,…,Nn) = R + Xi S 
•  F(R+Ni S) = F(R) + F’(R) S Ni  + F’’(R) (S2/2) Ni

2 +           
   F(3)(R) (S3/6) Ni

3   + F(4)(*) Ni
4 S4/24 

•  E[F(R+ Ni S)]  = E[F(R)] + E[F’’(R) S2] /2 + E[F(4)(*)Ni
4S4]/24 

•  E[F(R + Xi S)] = E[F(R)] + E[F’’(R) S2] /2 + E[F(4)(*)Xi
4 S4]/24 

•  |E[F(R + Ni S) – E[F(R + Xi S)| ≤ C E[S4] 

•  But, E[S2] = Ii(p). 

•  And by Hyper-Contractivity, E[S4] ≤ 9k-1 E[S2]2 

•  So: |E[F(R + Ni S) – E[F(R + Xi S) ≤ C 9k Ii
2 



A direct proof of E[S4] ≤ 9k-1 E[S2] 
 •  Assuming: E[Xi] = E[Xi

3] = 0, E[Xi
2] = 1, E[Xi

4] · 9. 
Note: deg(S) = k-1.  

•  Pf by induction on number of variables.  
• Write S = R + Xn T so deg(T) · k-2.  
•  E[S4]  = E[R4] + 6 E[R2 T2] + E[Xn

4] E[T4]  
•     · E[R4] + 6 E[R2 T2] + 9 E[T4]  
•     · (E[R4]1/2 + 3 E[T4]1/2)2  
•     · (3k-1 E[R2] + 3*3k-2 E[T2])2  
•      = 9k-1 (E[R2] + E[T2])2 = 9k-1 E[S2]2 

 

CS 

Induction 



Related Work 
• Many works generalizing Lindeberg ideaa.  
•  Rotar 79: Similar but no hyper-contraction, Berry-

Esseen.   
•  Classical results for U,V statistics.  
• M (FOCS 08, Geom. and Functional Analysis 10): 
• Multi-function versions.  
•  General “noise”. 
•  Bounds in terms of cross influences.  
• Motivation: Proving “Majority is Stablest”.  
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Majority is Stablest 
•  Let (Xi,Yi) ∈ {-1,1}2 &  E[Xi] = E[Yi] = 0; E[Xi Yi] = ρ. 
•  Let Maj(x) = sgn(∑ xi).  
•  Thm (Sheffield 1899):  
•  E[Maj(X) Maj(Y)]  M(ρ) := (2 arcsin ρ)/π 
•  Pf Idea: 
•  Let N,M ~ N(0,1) jointly Gaussian with E[N M] = ρ. 
•  Then:   
•  lim E[Maj(X) Maj(Y)]  = E[sgn(N) sgn(M)] = M(ρ)  
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Majority is Stablest 
•  Let (Xi,Yi) ∈ {-1,1}2 &  E[Xi] = E[Yi] = 0; E[Xi Yi] = ρ. 
•  Let Maj(x) = sgn(∑ xi).  
•  Thm (Sheffield 1899):  
•  E[Maj(X) Maj(Y)]  M(ρ) := (2 arcsin ρ)/π 
•  Thm (Borell, 1985): 
•  Let N,M be two n-dim normal vectors  
•  where (Ni,Mi) i.i.d. &  E[Ni] = E[Ni] = 0; E[Ni Mi] = ρ. 
•  Let f : Rn  [-1,1] with E[f]  = 0.   
•  Then: E[f(N) f(M)] ≤ E[sgn(N1) sgn(M1)] = M(ρ)  

13 



Majority is Stablest 
•  Let (Xi,Yi) ∈ {-1,1}2 &  E[Xi] = E[Yi] = 0; E[Xi Yi] = ρ. 
•  Let Maj(x) = sgn(∑ xi).  
•  Thm (Sheffield 1899):  
•  E[Maj(X) Maj(Y)]  M(ρ) := (2 arcsin ρ)/π 
•  Thm (MOO; “Majority is Stablest”): 
•  Let f : {-1,1}n  [-1,1] with E[f]  = 0.  
•  Ii(f) := P[f(X1,...,Xi,...,Xn) ≠ f(X1,...,-Xi,...,Xn)] ,  
•  I = max Ii(f) 
•  Then: E[f(X) f(Y)] ≤ M(ρ) + C/log2(1/I)  
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Majority is Stablest – Pf Idea 
•  Pf Sketch:   

•  E[f(X) f(Y)] = E[g(X’) g(Y’)] where 
•  g = T´’ f,  X’ and Y’ are ´ correlated and ½ = ´’2 ´  

•  g is essentially a low-degree function. 

•  Since g is of low influence and “low degree”:  
•  E[g(X) g(Y)] » E[g(N) g(M)]  · M(½) 

15 



Majority is Stablest – Context 
•  Conext: 
•  Conjectured by Kalai in 2002 as it implies majority 

minimized Arrow paradox in a class of functions. 
•  Proves the conjecture of Khot-Kindler-M-O’Donnell 

2005 in the context of approximate optimization. 
• More general versions proved in M-10 
• M-10 allows truncation in general “noise” structure.  
•  E.g: In M-10: Majority is most predictable:  
•  Among low influence functions majority outcome is 

most predictable give a random sample of inputs.  16 



Quantitative Social Choice  
•  Quantitative social choice studies different 

 voting methods in a quantitative way. 

•  Standard assumption is of uniform voting  
 probability.  

•  A “stress-test” distribution.  

•  Renewed interest in the context of 
    computational agents. 
•  Consider general voting rule  
•  f: {-1,1}n  {-1,1} or f : [q]n  [q] etc.  
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Errors in Voting  
•  Suppose each vote is re-randomized with  

 probability ε (by voting machine): 
•  Majority is Stablest in voting language: 
•  Majority minimizes probability of error in  

 outcome among low influence functions.  
•  Plurality is Stablest (IM) 11: 
•  Plurality minimizes probability of error in  

 outcome among low influence functions  
 (this is equivalent to the Peace-Sign  

    conjecture) 
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Errors in Voting  
•  Majority is Most Predictable (M 08; 10): 
•  Suppose each voter is in a poll with prob. p 

 independently. 
•  Majority is most predictable from poll  

 among all low influence functions.  
 
•  Next Example – Arrow theorem 
•  Fundamental theorem of modern social choice. 
 
 

19 



Condorcet Paradox 
•  n voters are to choose between 3 options / 

candidates.   
•  Voter i ranks the three candidates A, B & C 

via a permutation σi ∈ S3 
•  Let XAB

i = +1 if σi(A) > σi(B)  
          XAB

i = -1 if σi(B) > σi(A) 
•  Aggregate rankings via: f,g,h : {-1,1}n ! {-1,1}.  
•  Thus: A is preferred over B if f(xAB) = 1. 
•  A Condorcet Paradox occurs (“f irrational”) if:  

 f(xAB) = g(xBC) = h(xCA). 
•  Defined by Marquis de Condorcet in 18’th 

century.  

B 

C A 
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Arrow’s Impossibility Thm 

•  Thm (Condorecet): If n > 2 and f is 
the majority function then there 
exists rankings σ1,…,σn resulting in a 
Paradox 

•  Thm (Arrow’s Impossibility): For all n 
> 1, unless f is the dictator function, 
there exist rankings σ1,…,σn resulting 
in a paradox.  

•  Arrow received the Nobel prize (72) 
21 



Probability of a Paradox 

 

•  What is the probability of a paradox: 
•  PDX(f) = P[f(xAB) = f(xBC) = f(xCA)]? 

•  Arrow’s:: f = dictator iff PDX(f) = 0. 

•  Thm(Kalai 02): Majority is Stablest for ρ=1/3 
majority minimizes probability of paradox among low 
influences functions (7-8%).  

•  Thm(Isacsson-M 11): Majority maximizes probability 
of a unique winner for any number of alternatives.	


•  (Proof uses invariance + Exchangble Gaussian 
Theorem) 
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Probability of a Paradox 

 

•  Thm(Kalai 02): Majority is Stablest for ρ=1/3 majority 
minimizes probability of paradox among low influences 
functions (7-8%).  

•  Pf Sketch: 
•  PDX(f) = ¼ (1+E[f(xAB) f(xBC)+f(xBC) f(xCA)+f(xCA) f(xAB)]) 

•  |E[f(xAB) f(xBC)]| =  |E[f(xAB) f-(-xBC)]| =  |E[f T1/3 f-]| 

•   · E[f T1/3 f]1/2 E[f- T1/3 f-]1/2 · M(1/3) 

•  E[m T1/3 m-] = E[-m T1/3 m] = - M(1/3).  
23 



A quantitative Arrow Thm 

 

•  Arrow’s:: f = dictator iff PDX(f) = 0. 
•  Kalai 02: Is it true that ∀ ε ∃ δ such that 
•   if PDX(f) < δ  
•  then f is ε close to dictator?  
•  Kalai 02: Yes if there are 3 alternatives and E[f] = 0. 

•  M-11: True for any number of alternatives.  
•  Keller-11: Optimal dependency between ± ². 

•  Pf uses Majority is stablest and inverse hyper-
contractive inequalities (including quantitative 
Barbera Thm we saw). 
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Approximate Computational Hardness and Fourier 
Analysis  

•  Fourier Analysis plays an important role in hardness of 
approximation since the beginning. 

•  We follow with a brief overview of the connection to 
Gaussian techniques.  

•  Optimist CS: Design efficient algorithms. 
•  Pessimist CS: Problem is NP-hard. 
•  Optimist  CS: Design efficient approximation algs. 
•  Pessimist CS: Prove: computationally hard to 

approximate. 

•  New methodology: “UGC hardness”. 



Approximate Optimization 
• Many optimization problems are NP-hard. 
•  Instead: Approximation algorithms 
• These are algorithms that guarantee to give 

a solution which is at least  
• α OPT or OPT - ε. 
• S. Khot (2002) invented a new paradigm for 

analyzing approximation  
 algorithms – called UGC  
 (Unqiue Games Conjecture) 26 



THE UGC 
• UGC: For all ² > 0 9 q s.t. given  
• n equations of the form xi + xj = ci,j mod q 
• It is computationally hard to distinguish 

between the following two scenarios: 
•  1. It is possible to satisfy at most ² fraction 

of the Equations simultaneously. 
• It is possible to satisfy  
at least 1-² of the equations.  
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Example 1: The MAX-CUT Problem 

•  G = (V,E) 
•  C = (Sc,S), partition of V 
•  w(C) = |(SxSc) ∩ E| 
•  w : E ―> R+ 

•  w(C) = ∑ e ∈ E ∩ S × Sc w(e) 
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Example: The Max-Cut Problem 
•  OPT = OPT(G) = maxc {|C|} 
•  MAX-CUT problem:  

find C with  w(C)= OPT 
 

•  α-approximation: 
find C with w(C) ≥ α·OPT  

•  Goemans-Williamson-95:  
•  Rounding of  
•  Semi-Definite Program gives an  
α = .878567  approximation algorithm. 
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MAX-Cut Approximation 
•   Thm (KKMO = Khot-Kindler-M-O’Donnell, 2007): 
•   Under UGC, the problem of finding an  
• α > aGW = min {2 µ / ¼ (1-cos µ) : 0 < µ < ¼} = 0.87…  

approximation for MAX-CUT is NP-hard.  
• Moral: Semi-definite program does the best!  

•  Thm (IM-2011): Same result for MAX-q-CUT 
assuming the Peace-Sign Conjecture. 
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MAX-Cut Approximation  
  
•  Thm (KKMO): 
•   High level proof idea:  
•  Approximation factor is L/M where  
• M =  Opt E[f(x) f(y) : E[f] = 0]   
•  L =   lim Opt E[f(x) f(y) : E[f]= 0, I(f) < ε}  
•  (x,y) have some “noise structure” 
•  Second quantity studied via invariance + Majority is 

Stablest.  
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Other Approximation problems 
•   A second result using Invariance of M 08;10 
•  Raghavendra 08: Duality between Algorithms and 

Hardness for Constraint Satisfaction Problems. 
•   Thm: Every instance with gap  β’ < β  can  
    be used  to    prove  
    UGC-based   β’- hardness  result !     

 
•   Implies Semi-definite programs  
 with “optimal rounding”  
are optimal algorithms for optimization  
of Constraint Satisfaction Problems.    
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Other Approximation problems 
•   After KKMO+MOO 
•  Dozens of papers use the same recipe  
•  obtain optimal approximation ratio for many 

optimization problems.  
•  Best results use  “general” invariance M-08;10. 
•  Ex :Thm: (Austrin-M):  
•  Predicates that are pairwise independent  

 cannot be approximated better  
 than random.  
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Geometry behind Borell’s results 
•  I. Ancient: Among all sets with νn(A) 

= 1 the minimizer of νn-1(∂ A) is A = 
Ball.  

•  II. Recent (Borell, Sudakov-Tsierlson 
70’s) Among all sets with γn(A) = a 
the minimizer of γn-1(∂ A) is A = 
Half-Space. 

•  III. More recent (Borell 85):  For all 
ρ, among all sets with γ(A) = a the 
maximizer of E[A(N)A(M)] is given 
by     A = Half-Space.	
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Double bubbles •  Thm1 (“Double-Bubble”):  
•  Among all pairs of disjoint sets A,B 

with νn(A) =a νn(B) = b, the minimizer 
of νν-1(∂ A ∪ ∂ B) is  a “Double 
Bubble” 

•  Thm2 (“Peace Sign”):  
•  Among all partitions A,B,C of Rn with γ

(A) = γ(B) = γ(C) = 1/3 , the minimum 
of γ(∂ A ∪ ∂ B ∪ ∂ C) is obtained for 
the “Peace Sign” 

•  1. Hutchings, Morgan, Ritore, Ros. + Reichardt, 
Heilmann, Lai, Spielman 2.  Corneli, Corwin, Hurder, 
Sesum, Xu, Adams, Dvais, Lee, Vissochi 35 



Newer Isoperimetric Results 
•  Conj (Isaksson-M, Israel J. Math 2011): 

For all 0 ≤ ρ ≤ 1: 
 argmax E[A(X)A(Y) + B(X)B(Y) + C(X)C(Y)] 
= “Peace Sign”  
 where max is over all partitions (A,B,C) of 
Rn with  γn(A) = γn(B) = γn(C) = 1/3 is  

•  Thm (Exchangble Guass. Thm, IM-11): 
•  Let X,Y,Z be Gaussian vectors each with 

pairwise ρ × Id covariance then   
•  argmax{ E[A(X)A(Y)A(Z)] : γn(A) = ½} = 

half space.  

Later we’ll see 
applications 

Peace sign 
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A proof of Borell’s result 
•  Cute proof (Kinlder O’Donnell 2012):  
•  Let P(A) = ½. Let M,N be ½ = cos µ correlated N(0,I) 
•  q(µ)   := P[N 2 A,  M 2 Ac] =  
•         =P[N 2 A, cos µ N + sin µ Z  2 Ac]     
•             · kq(µ/k). 
•  For µ = ¼/2, p(µ) = ¼.  
•  So q(¼/2k) ¸ 1/(4k).  
•  For majority we get equality!  
•  P[N1 2 A, cos µ N1 + sin µ Z1  2 Ac]  = µ/(2 ¼). 
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Summary 

•  Prove the “Peace Sign Conjecture” (Isoperimetry)  
•   ⇒ “Plurality is Stablest” (Low Inf Bounds) 
•   ⇒ MAX-3-CUT hardness (CS) and voting. 
+ ⇒ Results in Geometry. 
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