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Hyper-Contractive Inequalities

The "noise” (Bonami-Beckner) semi-group on {—1,1}1
2

Def 1: T; is the Markov operator where the conditional probability
of y given x is given by y; = x; with probability (1 + e~?)
independently for each coordinate

Def 2: T; is the n'th tensor of the operator T} on L?({—1, 1}%)
defined by T/(f) = e 'f + (1 — e *)E[f]

Hyper-contractivity (Bomani, Beckner, Gross):
For f: {-1,1}1 - R:
2

ITefllp < [|fllq for p>q>1and t > JInE=g
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Why do we like Hypercontractive inequalities?

Hyper-contractivity (Bomani, Beckner, Gross):

For f : {-1,1}1 — R:
2

| Tef|lp < ||fllg for p>¢g>1and t> %Ing—:l

Boolean applications

Def: f:{-1,1}" — R is Boolean if f € {0,1}

For Boolean f: relate Fourier decay || T;f||3 = s ?2(S)e_2t|5| to
probability of events: ||f||q = P[f = 1]%/9

Used in KKL88, Talagrand 94 and most papers in discrete Fourier
analysis
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Other Discrete Spaces

Other Discrete Spaces

What if f : {0,1}" — {0,1}?

What if f: Q" — {0,1} for some discrete space Q7

Many results in discrete Fourier analysis generalize easily given
hyper-contractive estimates

Bonami Beckner Noise for General Product Spaces

Setup: T'f = e tf + (1 — e *)E[f] and look at T'®"

Probabilistic meaning: Markov Chain where each coordinate is
de-randomized with probability (1 — e™*) independently
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Hyper-contractive estimates for discrete spaces

Oleszkiewicz 2003:

Formula for @ = {0,1}, if p=2>qgorp<2=gq

In particular as a — 0:

ITefll2 < [Ifllq iff £ 2 (5 — 3)In(1/)

ITefllp < lIfll2 iff t 2 (53 = 5)In(1/a)

v

Wolff 2007:

Let a = mingeq P(w)

As o — 0:

ITefllp < [Ifllq iff £ 2 (5 — 5)In(1/c)
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Reverse-Hyper-Contractive inequalities; What?

Borell's reverse bound
Reverse-Hyper-Contractivity (Borell 85):

For all f: {-1, 1}1’/2 — Ry:

| Tefllg > [If|lp for 1 > p>gqand t > 4In =2

Nl
o}
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Reverse-Hyper-Contractive inequalities; What?

Reverse-Hyper-Contractivity (Borell 85)
For all f: {—1, 1}5’/2 — Ry:

| Tefllq > ||f]lp for 1 > p>qand t > 1In1=4

T

Does this make sense? )
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"Norms” when p,g <1

Reverse Minkowski inequality

If f is non-negative p < 1 and T is a Markov operator then:

ITFllo > [Ifllo

Reverse Holder inequality

If f, g are non-negative and p, p’ are dual norms < 1 then:

Elfg] = lIfglls = Ifllpllgllp-

Reverse-Hyper-contractivity (Borell 85)

Forall f:{-1, 1}’1’/2 — Ry

[ Tefllg > [fllp for 1> p>gqandt> 1In%

Nl
o
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Why? What? When?

Reverse-Hyper-contractivity (Borell 85)
For all f: {-1, 1}1’/2 — R

ITefllq > |If]lp for 1> p > gand t > 3 Ini=2
Why is it true? J

What is it good for? |

Is it true for other discrete spaces? J
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Why is it true? Borell's argument

From Reverse Minkowski suffices to prove for n =1

From Revese Holder suffices to prove for 0 < g < p <1

I11. Core of Proof
Write f(x) =1+ ax where —1 < a<1

Taylor expand ||f||5 and || T;f||§ and compare terms

v

Comment

Steps I. and |l. are standard and general. Step lll. is at the core of
the proof
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Borell's argument continued

n=1, f(x)=14+ax, ae(-1,1), 0<g<p<l1
1115 =1+ 3202 (5,)a%
Tl =14+ 302 () e 2ma?"

By Convexity: || T¢f||5 > 1+ By, (J)e2nta2n

Reduces to: g(;’n) e 2t > (2”,7)

Or: 5(211)(57:})’1 2 (2pn)

Further reduces to: (i — q)(1 — p)*/2 < (i — p)(1 — q)*/2 for i > 2
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What is it good for?

Correlated pairs (M-O'Donnell-Regev-Steif-Sudakov-05):

Let x,y € {—1, l}i’/2 correlated as follows:
x is chosen uniformly and y is T; correlated version.
i.e. E[xjy;] = e~ " for all i independently

Let A, B C {~1,1}7, with P[A] > ¢ and P[B] >

2
Then: Plx € A,y € B] > e1—<"f

From Reverse Holder and Borell's result get for any f, g > 0:

ElgTef] > [Iflollely ¥t >3Ini=2

For f = 14,g = 1 optimize norms p and g
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What is it good for? Cosmic coin model
Coin-Tossing Model

k players want to toss the same coin

Each player gets a y' that is p correlated with x € {—1,1}".

If f(y) € {0,1} is the coin toss then prob. of agreement is
ITefllk + 1Te(1 = F)]I.

Proposition (M-O'Donnell-Regev-Steif-Sudakov-05):

If £ €{0,1} and E[f] < 1/2 then || T,f||k < K1—e*+o(1)

Comments

This is tight!

Proof uses reverse-hyper-contraction. Standard Hyper-contractivity
1
gives a bound of || T,f|| < 0.5/
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Arrow Theorem

3 alternatives a, b, ¢ that are ranked by n voters.

Voter i preference of avs. b, b vs. c and c vs. a are x;, y; and z;

(xi,yi,zi) € R:={-1,1}3\ {(1,1,1),(~1, -1, 1)} for all i.

fog,h:{-1,1}" — {—1,1} aggregate the pairwise preference.

Arrow's Theorem (51)

Let f,g,h:{-1,1}" — {—1,1} satisfying for b = +1:
f(b,...,b)=g(b,...,b) = h(b,...,b) = b (Unanimity).

Then either 3i s.t Vx, f(x) = g(x) = h(x) = x; or

Ix,y,z € R" s.t. f(x) =g(y) = h(z2).
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Arrow Theorem and Hyper-Contractivity

Reverse-hyper-contractivity is essential in recent quantitative
proofs of Arrow's theorem by M-2011 and Keller-2011 following
Kalai's paper (02) in the balanced case. For example:

Barbera's Lemma (82);

Lef f, g, h: {—1,1}" — {—1,1} with L(f) > 0, h(g) > O

Then 3x,y,z € R" s.t. f(x) = g(y) = h(z)

Quantitative Barbera's Lemma (M-11)
Lef f,g, h: {—1,1}" — {—1,1} with h(f) > €, h(g) > €

Then P[f(x) = g(y) = h(z)|(x,y.2) € R"}] > &

Elchanan Mossel, Krzysztof Oleszkiewicz, Arnab Sen Reverse Hyper Contraction



Interest in Rev. Hyp contraction on other spaces?

Motivation 1:

Lower bounds for P[X € A, Y € B] for correlated X, Y in general
product spcaes

Motivation 2:
Obtain bounds for " Cosmic Die Problem”

Motivation 3

Prove Quantitative Arrow Theorem for non-uniform distributions
over voters profile
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Hyper and Reverse-Hyper Contractive inequalities

Reverse-Hyper-contractivity (Borell 85)
For all f: {—1,1}7 — R,
2

ITefllg > |Ifllp for 1>p>qandt>

Hyper-contractivity (Bomani, Beckner, Gross):

For f : {-1,1}1 = R:
2

I Tefllp < [|fllq for p>g>1and t > 3InE=g

Is Hyper-Contraction equivalent to Rev.-Hyper-Contraction?
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Our Results (M-Oleszkiewicz-Sen-11)

Let 2 be an arbitrary space and let T; be the corresponding
Bonami-Backner semi-group. Then for all f : Q" — R,:

ITefllg > [|f]lp for 1> p > g and t > Ini=2
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Our Results (M-Oleszkiewicz-Sen-11)

Forall f: Q" — R4:

ITefllg > [|f]lp for 1> p> g and t > Ini=2

Compare to Borell 82, Oleszkiewicz 03, Wolff 07

For all f:{-1, 1}{'/2 — Ry

I Tefllg = [|fllp for 1> p>gand t > 3Ini=2

T

Forall f:{—1,1}7 — R4 need t 2> (% - %) In .

Note: inequality does not depend on underlying space!.

Sharper (but not tight) bounds are obtained in the paper
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Further Results (M-Oleszkiewicz-Sen-11)

Log-Sobolev and Rev. Hyper-Contraction

Let T; = et be a general Markov semi-group. Suppose L
satisfies 2-Logsob or 1-Logsob inequality with constant C. Then
for all g < p < 1, all positive f and all t > & 7 log = 1= q it holds that
I Tefllg = [I£1lp-
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Product Space Applications (M-Oleszkiewicz-Sen-11)

Correlated Pairs

Let x,y € (Q, u") correlated as follows:

x ~ 1" and y is T; correlated version where T; = e tU-E) is the
Bonami-Beckner operator.
Let A, B C Q" with P[A] > € and P[B] > €. Then:

2

Plx € A,y € B] > 112

Quantitative Arrow’s Theorem

Obtain a quantitative Arrow theorem for voting distribution "
where 1 is any non-degenerate distribution on

1,133\ {(1,1,1), (-1, -1, -1)}.
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Markov Chain Applications (M-Oleszkiewicz-Sen-11)

Correlated Pairs

Let x,y € (R, 1) correlated as follows:

x ~ p and y is Ty correlated version where T; = et where L

satisfies 1 or 2-LogSob inequality with constant C

Let A, B C Q" with P[A] > € and P[B] > €. Then:

2
Plx € A,y € B] > e1-=72/¢

Glauber Dynamics for Ising model in High Temperatures in [n]9.

A={x:Maj(x)=+}, ,B={x:Majx)=-}, C=
O(1), tmix = O(logn)

Random-Transposition Card Shuffle

General A, B. We have C = ©(n), tmix = ©(nlogn)
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A Queueing Theory Application (M-Oleszkiewicz-Sen-11)

A queueing process

Take {0,1}7 with the Bonami-Beckner operator T; and
' X=",X.

As n — oo, X ~ Poisson(\) and T:X is the following queueing
process:

At [t, t 4 dt]: 1) Each customer is serviced with probability dt.
2) The probability of a new customer arriving is Adt

From our results if P[A] > ¢, P[B] > € then
2
P[X € A, T:X € B] > e1-<"/2

Process has infinite mixing time and 2-logSob. 1-logSob is known
to be finite (Liming Wu 97)
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Proof Sketch

Equivalence with Log-Sobolev inequalities

Using Equivalence of Log-Sob-p inequality and Hyper/Rev-Hyper
inequalities work with Log-Sob-p

Main step: Monotonicity of Log-Sob

Log-Sob-p = Log-Sob-g forall2>p>qg>0

Log-Sob-1 for simple operators

Show that Log-Sob-1 holds with C = 4 for the semi-group e~ t(/~E)

Also: Wu, Bobkov-Ledoux, Diaconis-Saloff-Coste
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Definition of logSob

Standard Definitions

Ent(f) = E(flogf) — Ef - logEf

E(F,g) = E(fLg) = E(gLf) = £(g,f) = —4EfTrg| __

Definition of Log-Sob

p-logSob(C) <= Vf, Ent(fP) < ; CP nE(FPF) (p#0,1)

1-logSob(C) <= Vf,Ent(f) < $E&(f,logf)
0-logSob(C) <= Vf, Var(log f) < —SE(f,1/f)

All functions are positive. Non-Standard normalization, 1-logSob ~
modified-logSob (Defined by Bakry, Wu mid 90s)

v

Elchanan Mossel, Krzysztof Oleszkiewicz, Arnab Sen Reverse Hyper Contraction



LogSob - Easy facts

Self-Dual Definition

For p#0,1: E(FP~L, f) = £(gV/P,gP), g=fP
p-logSob(C) <= Vg, Ent(g) < %p/g(gl/p’gl/p/)

= (p-logSob(C) <= p’-logSob(C)).

1-logSob

Claim: If L =/ — E then L is 1-logSob(4).

Ent(f) =Eflogf —Ef -logEf <Eflogf —Ef-Elogf =
Ef(logf —Elogf) =EfLlogf = E(f,logf).
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Log-Sob Monotonicity

Main Thm: Monotonicity
p-logSob(C) = g-logSob(C) for0 < g < p <2
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Log-Sob Monotonicity

Thm: Monotonicity
p-logSob(C) = g-logSob(C) for 0 < g < p <2

Main applications

p=1,qg <1 Gives | — E satisfies Rev. Hyp. Contraction

p=2,q <1 Gives Hyp. Contraction =— Rev. Hyp. Contraction

1 =g < p=2isdue to Gross (q > 1), Bakry (g = 1) etc.

Recall p-logSob(C) <= Vg, Ent(g) < %"/E(gl/”,gl/p/)

Using continuity at 0 and 1 suffices to show the following
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Comparison of Dirichlet forms

Thm: Generalized Stroock-Varopoulos

For all p > g with p,q € (0,2] \ {1} and all g > 0:

qq'E(g"9,gY/9) > pp'E(g'/P, gV/P")
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Comparison of Dirichlet forms

Thm: Generalized Stroock-Varopoulos
For all p > g with p,q € (0,2] \ {1} and all g > 0:

qq'E(g¥/9, g9) > pp'E(gt/P, g'/P')

Proof based on the following Lemma (Exercise):

Va, b > 0:
qq'(al/q _ bl/q)(al/q’ _ bl/q’) > pp/(al/p _ bl/p)(al/p’ _ bl/p’)

v
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Pf Sketch

qq'(a%/9 — bH9)(a'/9 — pt/9') >
pp'(al/P — BUP) (&P — bMP) = by
aq' Tel(g/7 — b/9)(g/% — b1/7)] >

PP/Tt[(gl/p - bl/p)(gl/p/ - bl/p/)] = Rearrange
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Pf Sketch

qq'(at/9 — p1/9)(al/d — pt/a) >

pp/(al/p _ bl/p)(al/p’ _ bl/p’) — o sgrapplyT:

qq' Te[(g"/9 — b*/9)(g"/7 — b¥/ )] >

PP’Tt[(gl/p - bl/p)(gl/'n/ - bl/p/)] = Rearrange

qq' (Telg] — b 9T [gV/ 9] — b¥/9 T,[g/9] + b) >
pp/(Tilg] — bYPTe[g!/P] = BY/P Ti[gV/P]+ b) = b 5g
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Pf Sketch

qq'(al/q _ bl/q)(al/q’ _ bl/q’) >

pp'(at/P — bY/P)(a'/P" — p1/P) = a—>g+applyT:
qq’Tt[(gl/q _ bl/q)(gl/q’ _ bl/q’)] >

pp’ Tt[(gl/p - bl/p)(gl/p/ - bl/pl)] = Rearrange
qq'(Telg] — b9 Te[g"/ 9] — b9 T,[g"/9] + b) >
pp/ (Telg] — b/PTi[g!/P] — bYP Ti[g Pl + b) = b g

qq' (Telgl — &Y/ 9Te[g"/9] — g% Ti[g¥/ 9] + g) >

pp'(Telg] — g"/PTelg"/P] — g"/P Te[g"?] + &) = Taking =
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Pf Sketch

qq/(al/q _ bl/q)(al/q’ _ bl/q’) >

pp'(a'/P — b1/P)(a /P — p1/P) — a—>g-+applyT;

qq' Te[(g¥/9 — bY/9) (g9 — b)) >

PP’Tt[(gl/p - bl/p)(gl/p, - bl/p/)] = Rearrange

qq' (Telg] — b 9T [gV/ 9] — b¥/9 Te[g/9] + b) >

pp/(Telg] — b/PTe[g!/P] — bYP Te[g Pl + b) = g

qq' (Telg] — &Y/ Te[g"/ 9] — g9 To[g¥/9] + g) >

PP (Telg] — 8P Te[g"/P] — /P Te[g"/P] + &) = Taking &
qq' (2E[g] — 2E[g/9 T:[g/]]) >

pp' (2E[g] — 2E[g¥/P T [g'/P]]) =
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Pf Sketch

qq/(al/q _ bl/q)(al/q’ _ bl/q’) >

pp/(al/P _ bl/p)(al/p’ _ bl/p’) =, giapplyT:

qq' Te[(g"/9 — b*/9)(g"/7 — b¥/)] >

pp’ Tt[(gl/p - bl/p)(gl/p/ - bl/p/)] = Rearrange

qq'(Telg] — b9 T[g"/ 9] — b9 T,[g"/9] + b) >

pp' (Telg] — bY/PTi[g"/P | — b7 Ti[g"/P] + b) —> b =g
qq'(Tilg] — g/ Te[g"/ 7] — g/ Ti[g"/ ) + g) >
pp'(Ttlg] - 1/th[gl/’D’] - l/p/ Tig'P] +g) = Taking E

qq’(2E[g] — 2R[gY 9T [g"/7]]) >

pp'(2E[g] - 2E[g"/P T [g'/"]]) =
Note that t = 0 equality holds. Therefore

d d
4 olHS > & (RHS —

qq'E(g¥/9, g9 > pp'E(gt/P, g'/P')
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Log-Sob <= (Rev) Hyper-contraction

Log Sob = Rev-Hyper-Contraction

Proposition: r-Logsob(C) == || T:f|lq > ||f]|, for all f > 0 and
r’gqugriftz%logt—g.

Proof Sketch

Assume: 0 < g<p<r

— 2
Let t(q) = §log 1=2, t(p) =0, ¢°t'(q) = 5.y

Let ¢(q) = [ Te(q)fllq- Note that ¥(p) = |||,

Ent(f )~ a*t (Q)E(Fi)" fia)
d _ t(q) t(q) >'t(q)
d7q IOg ” Tt(q)qu - q2Ef;‘(7q) S 0'

since g-logSob(C) holds which follows from r-logSob(C) in turn.
The case r' < g < p < 0 follows by duality. The remaining cases
follow by taking limits, duality and composition
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Log-Sob <= (Rev) Hyper-contraction

Log Sob = Rev-Hyper-Contraction
3C | Te pgr=afllq 2 Ifllp YO < g < p < r = r—logSob(C)
4 1

—p

Similar results hold for hypercontractivity \
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Open Problems

Tighter values?

Find tight bounds for simple/general Markov operators

For simple operators we get || T¢f||q > ||f||, for ¢ < p <0 and

tZIog%:—gandalsofor0§q<p<1and tZIog%

Applications?

Applications of strong mixing properties of Markov-chains?

Are there examples where r-logSob holds while r’-logSob does not
hold for 0 < r < r' <17
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