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‘ Motivation

Graphs/networks: ubiquitous in many domains — e.g. biology, physics,

chemistry, infrastructure, communications, and sociology

Many methods to understand structure at very large-scale (diameter, degree

distribution) and very small-scale (clustering coefficient).

5M node graph).

structure?
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The US electric transmission system.

Drug-Target Network.

Very few tools to probe intermediate-scale structure (clusters of size 5K in a

Can we develop tools to understand and exploit this intermediate-scale

A partial map of the Internet



v What do social graphs "look like"?




] Who cares what social graphs “look like"?

Helpful to develop intuition (for “data scientists”)
* Degree distribution, clustering coefficients are very basic stats

* What about better and more robust variants?

Helpful to control inference (for machine learners and statisticians)
* Typically control inference with low-dimensional structures

* What if social graphs are not meaningfully low-dimensional?

Helpful do develop non-trivial theory (for theorists)
* O(Ig(n)) distance approximation isn't so good if diameter is O(lg(n))

* Social graphs are very good “hydrogen atom” for development of algorithmic/
statistical methods more generally

But maybe you don't care:
e.g., if you just want to do 0.001% better predicting some well-defined metric.

e.g., if “meta-information” is more important than the graph itself.



‘ How people think about networks

“Interaction graph” model of networks:

* Nodes represent “entities”
e Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric

e Strength: powerful framework for analyzing algorithmic complexity
e Drawback: geometry used for learning and statistical inference



] | ots of “networked data” out there!

» Technological and communication networks
—AS, power-grid, road networks

e Biological and genetic networks
—food-web, protein networks
e Social and information networks

— collaboration networks, friendships; co-citation, blog cross-postings,
advertiser-bidded phrase graphs ...

e Financial and economic networks
—encoding purchase information, financial transactions, etc.

e Language networks
— semantic networks ...

e Data-derived “similarity networks”
—recently popularin, e.g., "manifold” learning



Social and Information Networks

=

e Social nets | Nodes | Edges | Description
LIVEJOURNAL | 4,843,953 | 42,845,684 | Blog friendships |4]
EPINIONS 75,877 405,739 | Who-trusts-whom [35]
FLICKR 404,733 | 2,110,078 | Photo sharing [21]
DELICIOUS 147,567 301,921 | Collaborative tagging
CA-DBLP 317,080 | 1,049,866 | Co-authorship (CA) [4]
CA-COND-MAT 21,363 91,286 | CA cond-mat [25]

e Information networks

CIT-HEP-TH 27,400 352,021 | hep-th citations [13]

Broc-Posts

437,305

565,072

Blog post links [28]

e Web graphs

WEB-GOOGLE
WEB-wTl0G

855,802
1,458,316

1,291,352
6,225,033

Web graph Google
TREC WTI10G web

e Bipartite affiliation (autho

rs-to-papers)

networks

ATp-DBLP 615,678 944,456 | DBLP [25]
ATP-ASTRO-PH 54,498 131,123 | Arxiv astro-ph [25]
e Internet networks

AS 6,474 12,572 | Autonomous systems
GNUTELLA 62,561 147,878 | P2P network [36]

Table 1: Some of the network datasets we studied.



] Popular approaches to network analysis

Define simple statistics (clustering coefficient, degree
distribution, etc.) and fit simple models
* more complex statistics are too algorithmically complex or statistically rich

* fitting simple stats often doesn’t capture what you wanted

Beyond very simple statistics:
* Density, diameter, routing, clustering, communities, ...

* Intermediate-scale structure (between very local/small-scale and very global/
large-scale)

* Popular models often fail egregiously at reproducing more subtle properties
(even when fit to simple statistics)
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network approaches

] Failings of “traditiona

Three examples of failings of “small world” and "“heavy tailed”
approaches:

* Algorithmic decentralized search — (Kleoo) - can we find short paths?
* Diameter and density versus time — (LKFos) - simple dynamic property

* Clustering and community structure — (LLDMo8) - subtle/complex static
property (ubiquitous in downstream analysis) related to inference

All three examples have to do with the coupling b/w “local”
structure and “global” structure --- solution goes beyond
simple statistics of traditional approaches.



] Prior evidence for tree-like structure

Prior work suggesting graphs/networks may be “tree-like” when viewed at
intermediate size scales:

Hyperbolic geometry of complex networks: use tree-based models for
identifying structure, including a temperature parameter

Geographic Routing Using Hyperbolic Space: advantages to embedding
internet routing networks into hyperbolic metrics

Community Structure in Large Networks: Natural Cluster Sizes and the Pt
Absence of Large Well-Defined Clusters: no good large conductance-based =
clusters, suggests expander-ness with degree heterogeneity enhances
hyperbolicity

Complex Graphs and Networks: theoretical work on random graphs; the
core of “power-law” graphs is a few high-degree, well-connected nodes
crucial in many paths

On interactive visualization of high-dimensional data using the hyperbolic
plane: visualization of large networks in structured hyperbolic metrics like
the Poincare disk

However, no consensus has been reached on defining and measuring this tree-
like structure, making it difficult to exploit algorithmically.




Outline

Background & failure of simple statistics

* Intermediate-scale structure

Notions of tree-like-ness & general thoughts on core-periphery

* Metric-based versus cut-based versus k-core-based notions of tree-like-ness

d-hyperbolicity in practice and in theory
* Many real graphs have size-resolved hyperbolic properties

* Too much randomness in models for theory to be nontrivial

Tree decompositions
* Many practical heuristics developed in scientific computing

* Tool for identifying small-scale and large-scale structure in real graphs

Connections with prior work

* On core-periphery & size-resolved isoperimetric/clustering/community structure



‘ Outline

Notions of tree-like-ness & general thoughts on core-periphery

* Metric-based versus cut-based versus k-core-based notions of tree-like-ness



‘ What does “tree-like” mean?

Intuitively: Empirical quasi-randomness (e.g., noise
in data or a random graph model) coupled with
structural heterogeneities (e.g., variable degree
distribution) leads to “tree-like-ness”

Goal: Quantify and exploit this idea:
* In a way that is statistically meaningful?
* In a way that is algorithmically tractable?

* In a way that is useful for practitioners in
the domain from which the networks are
constructed?




What does “tree-like” mean?

"Although large informatics graphs such as social and information networks are
often thought of as having hierarchical or tree-like structure, this assumption is
rarely tested, and it has proven difficult to exploit this idea in practice. Moreover,
given recent work demonstrating that large informatics graphs have properties
that are very different than small social networks and graphs that arise in other
machine learning and data analysis applications ... it is not clear whether such
structure can be exploited for improved graph mining and machine learning, even
assuming it exists.” [ASMa3]




] How to measure tree-like-ness

Number of edges to remove to make the graph a tree:
* Not good
O-hyperbolicity:
* Notion from geometric group theory that captures tree-like i.t.0. metric structure

* (Existing random graph models (and real data) have “too much randomness” making the use of
hyperbolicity very sensitive)

Tree decompositions:

/TB\) @E\
B\JB //— * Notion from structural graph theory that captures tree-like i.t.o. the cut structure
* (Existing heuristics designed for scientific computing often don’t perform very well, but they do
D E g g puting P )4 y

capture some properties)

k-core decompositions:

* Fast heuristic that does not measure tree-like-ness in general

* (For realistic graphs, it can be “rationalized” in terms of nested-core-periphery structure that
tree decompositions and 0-hyperbolicity (different in general) identify)




] A geometric measure of tree-like-ness

= Gromov's 6-hyperbolicity: arises from metric space geometry; 6 measures the
extent to which a (geodesic) metric space embeds in a tree metric.

Note: d(u,v) is

0 o § = . the length of

- shortest path

0=0
—> O — betueen
W——X

d(u,v) +d(w,x)=1+1=2 d(u,v) +dw,x)=1+1=2
d(u,x) +d(v,w)=1+1=2 d(u,x) +d(vyw)=2+2=4
d(uw) +d(v,x)=1+1=2 d(uw)+d(v,x)=1+1=2

Definition: [Gromov, 1987]| A graph is d-hyperbolic iff: For every 4 vertices u, v,
w, and z, the larger 2 of the 3 distance sums, d(u, v)+d(w, z) and d(u, w)+d(v, 2)
and d(u, z) + d(v,w), differ by at most 20.

* Several equivalent (up to constants) definitions---6 thin triangles, 6 slim triangles, etc.



] A combinatorial measure of tree-like-ness

= Atree decomposition of a graph G = (V,E ) is a pair (X, T), where X={X_, X,, ..., X/}

s 27

is a collection of subsets of V, and T is a tree with nodes {1, ...,L} satisfying three
conditions:

The union of the sets in X'is equal to V
For every edge (u,v) in G, {u,v}is a subset of some X;
For every vin V, the indices of {X3} containing V form a sub-tree of T.

= Call the sets X; the bags of the decomposition and max(| X;|) the width. The
tree-width of G is the min width over all valid tree decompositions



Core-periphery: K-core decompositions

* The k-core of a graph G = (V,E),
denoted H, is the maximal subgraph ' «
H of G s.t. deg,(v) = kfor all vin H. ‘

*The core number of a vertex vis

defined to be the maximum k so that
visin Hkbut notH,, .

* The the k-shell of G is the set of
nodes with core number k.

* (k-cores do NOT capture tree-like structure
in general.)

* (Prior work has shown “nested core-
periphery structure” for a different notion of
core/periphery.)

é..i-r-'-'i-'f;"f";fn;age credit: LaNet-vi

Condensed Matter Collaboration Network



] Tree-like-ness: metrics and cuts

& hyperbolicity: How similar is the Tree decompositions: How similar is
metric structure of the graph to the the cut structure of the graph to the
metric structure of a tree? cut structure of a tree?

Hard to split

)

X - Exact
I

N

Distorted 4 \ Easy to split
| e \ /

[\
\/




Tree-like-ness and toy graphs

SmallPlanar

(v/n x v/n grid)
e e

SmallBinary

(metric-based
tree-like-ness)

Treewidth

(but-based
tree-like-ness)

1 Vn

T

SmallRing  SmallClique >mallER
(p>lg(n))/n)
o o N ﬂ :
o ST LD
O=0
n/4 o) Ig(n)
2 n-1 n

\Vn, n/4, & Ig(n) are all
“large”: since the equal the
diameter

vn, n-1, & n are all
“large”: since the equal the
size of trivial separator

6 and treewidth are maximally different on rings and cliques, but:

* capture similar properties on realistic social graphs

* interesting connections with spectral methods embedding data

in lines and cliques



Tree decompositions and toy graphs

SmallBinary SmallPlanar SmallRing  SmallClique  SmallER
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Graphs we look at and why we look at them

Network ‘ n | e | Ne ‘ e | d | C | D | D | Description

ER Random Graphs

ER(1.6) 5000 3996 | 3210 3471 | 2.16 0.00 | 38 | 15.8 | ER graph with p = 1.6/n

ER(1.8) 5000 4486 | 3617 4118 | 2.28 | 9.30 x10=* | 34 | 12.7 | ER graph with p = 1.8/n

ER(2) 5000 4986 | 4001 4783 | 2.39 | 9.11 x10=* | 30 | 11.9 | ER graph with p =2/n

ER(4) 5000 9881 | 4879 9878 | 4.05 | 8.96 x1073 | 15 | 6.80 | ER graph with p =4/n

ER(8) 5000 | 20102 | 4998 | 20102 | 8.04 | 1.59 x1072 | 7 | 4.81 | ER graph with p = 8/n

ER(16) 5000 | 40215 | 5000 | 40215 | 16.1 | 3.13 x10=2 | 5 | 3.86 | ER graph with p = 16/n

ER(32) 5000 | 80258 | 5000 | 80258 | 32.1 | 6.39 x10=2 | 4 | 3.05 | ER graph with p = 32/n

PL Random Graphs

PL(2.25) 5000 5790 | 3393 5634 | 3.32 0131 | 16 | 5.51 | PL graph with v = 2.25

PL(2.50) 5000 7238 | 4895 6802 | 2.78 | 2.46 x1073 | 18 | 6.65 | PL graph with v = 2.50

PL(2.75) 5000 6236 | 4650 5641 | 2.43 | 6.99 x10~* | 22 | 8.20 | PL graph with v = 2.75

PL(3.00) 5000 5363 | 4071 4556 | 2.24 | 1.18 x1073 | 29 | 10.1 | PL graph with v = 5.00

SNAP Graphs

As20000102 6474 | 12572 | 6474 | 12572 | 3.88 399 | 9 | 4.34 | Snapshot of autonomous systems network
CA-GrQcC 5241 14484 | 4158 | 13422 | 6.46 .665 | 17 | 6.74 | Collaboration network, general relativity
CA-AsTROPH 18771 | 198050 | 17903 | 196972 | 22.0 .669 | 14 | 4.77 | Collaboration network, astrophysics
GNUTELLAO9 8114 | 26013 | 8104 | 26008 | 6.42 0137 | 10 | 5.22 | Peer-to-peer filesharing network
EMAILENRON 36692 | 183831 | 33696 | 180811 | 10.7 708 | 13 | 4.72 | E-mail network of Enron

OREGON1 11174 | 23409 | 11174 | 23409 | 4.19 453 | 10 | 4.28 | AS peering information

FB Graphs

LEHIGHFB 5075 | 198347 | 5073 | 198346 | 78.2 270 | 6 | 3.19 | Facebook friend network from Lehigh
VANDERBILTFB | 8096 | 427832 | 8063 | 427829 | 106 2255 | 7| 3.18 | Facebook friend network from Vanderbilt
STANFORDF B 11621 | 568330 | 11586 | 568309 | 98.1 252 | 9 | 3.35 | Facebook friend network from Stanford
Miscellaneous Graphs

POWERGRID 4941 6594 | 4941 6594 | 2.67 107 | 46 | 24.2 | Western US power grid

PoLBLOGS 1224 | 16715 1222 16714 | 27.4 .360 | 8 | 3.43 | Political blogs network

PLANARGRID 2500 4900 | 2500 4900 | 3.92 0.00 | 98 | 73.0 | 50-by-50 planar grid

RANDGRID(3) 2500 3808 114 205 | 3.60 510 | 34 | 21.4 | Random planar graph, average degree 3
RANDGRID(7) 2500 8679 | 2480 8656 | 6.98 596 | 68 | 55.7 | Random planar graph, average degree 7



‘ Some initial k-core results

Adcock, Sullivan, and Mahoney (2012)

The effect of extreme sparsity in (real and model) random/noisy graphs:

Erdos-Renyi, G,,, n=2500:
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18 Average k-she
4
16 /A
14 B 35 £
N
~
5 / o
o 12 ~
2 g 25 / ™S
g 1 5 .
o f= ™
S os / 5 2 / ~
% o6 / 2 1s / N
g / N 2 B
X 04 /- N 2 1
0.2 \\\ 0.5
.
~
o o
0.2 0.5
° 1 2 3 0 1 2 3

p=.0008, giant component p=.0016, giant component

SSSSSSSSSS



Some initial k-core results

=

Adcock, Sullivan, and Mahoney (2012)

The effect of extreme sparsity in (real and model) random/noisy graphs:
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Collaboration and social graphs:

Average k-shell Edge Jump
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Some (oversimplified) summary stats...

|
] Adcock, Sullivan, and Mahoney (2012)

ca-AstroPhysics:

o ~0.6% of nodes (113 nodes) in two
deepest cores (k = 55,56)

. ~1.8% of edges (~7,000 edges)
leaving the deepest core (k = 56)

. ~1.8% of edges (~7000 edges)
leaving next core (k = 55)

. Maxaverage k-shell change is +12
(out of k = 56 max shell)

Suggests collaborators tend to
collaborate with people of similar
coreness/peripheryness

“Typical” for collaboration graphs (and
other NCP core-periphery graphs)

Texas84:

« ~8% of nodes (=2400 nodes) in two
deepest cores (k = 80,81)

. ~7% of edges (=220K edges) leaving
the deepest core (k = 81)

« ~17% of edges (=510K edges )
leaving the next core (k = 80)

« Max average k-shell change is +50
(out of k = 8o max shell)

Suggests that the “periphery” nodes
are more tightly connected to
“core-like” nodes

“Typical” for more social graphs (and
Facebook in particular)



Network ‘ Ne ‘ CZ | kmzn | kmaw | Pk:mzn ‘ Pkmaa:

M O ro e ER Networks
ER(1.6) 3210 [ 216 | 1 2 58.7 | 41.3
ER(1.8 3617 2.28 1 2 49.6 50.4
! k"CO re EREQ) ) 4001 | 2.39 | 1 2 | 415 | 585
. . ER(4) 4879 4.05 1 3 8.28 67.6
statistics ER(8) 4998 | 8.04 | 1 5 | 300 | 883
ER(16) 5000 16.1 4 11 0.04 88.3
Adcock, Sullivan, and Mahoney (2014) ER(32) 5000 32.1 7 23 0.02 93.8
PL Networks
PL(2.25) 3393 3.32 1 5 45.7 0.825
PL(2.50) 4895 2.78 1 4 52.2 0.776
; PL(2.75) 4650 2.43 1 2 59.0 41.0
PL(3.00) 4071 | 2.24 1 2 65.9 | 34.1
'-\ Planar Networks
1 PLANARGRID 2500 | 3.92 | 2 2 100 100
PowERGRID 4941 2.67 1 5 32.1 0.243
Real Networks
AS20000102 6474 3.88 1 12 37.9 0.324
OREGON1 11174 4.19 1 17 35.3 0.269
LeHIGHFB 5073 78.2 1 62 1.42 15.4
VANDERBILTF B 8063 106.1 1 86 1.98 23.3
STANFORDF B 11586 | 98.1 1 91 4.36 20.1
CA-GrQC 4158 6.46 1 43 17.9 1.06
CA-AsTROPH 17903 | 22.0 1 56 5.55 0.318
EMAILENRON 33696 10.7 1 43 28.4 0.816
EMAILEUALL 224832 | 3.02 1 37 83.9 0.130
PoLBLOGS 1222 27.4 1 36 11.3 4.50
STANFORDWEB | 255265 | 15.2 1 71 5.98 0.152

Table 1: k-core network statistics: Pypin and Py,,q. are percentage of nodes in
the k,,;n and k.. shells, respectively.



Summary of results for notions of tree-
like-ness & core-periphery

* 6 hyperbolicity and tree decompositions in general capture very
different manners in which graphs can be tree-like

* (Good since NCP results of LLDMo8 show realistic social graphs are
very different in terms of both metric and cut structure)

* For realistic social graphs, they often capture very similar core-
periphery structures, also captured with k-core decompositions

* Different tree decomposition heuristics behave in characteristic ways
on toy graphs

* “Extremely sparse” versus “very sparse” leads to different k-core (and
many other) properties

* k-core properties of real graphs differ a lot, e.g., number of deep cores
and number of nodes in deep cores



‘ Outline

d-hyperbolicity in practice and in theory
* Many real graphs have size-resolved hyperbolic properties

* Too much randomness in models for theory to be nontrivial



] 0,. scaled and size resolved 0

o(x, 1, 24, V)
0,= max
payar=d

Let ¢(x,y,u,v) be the maximum pairwise distance between the four points.
Then, &, gives the hyperbolicity of structures of size d as a function of d.
Example:



] 0,. scaled and size resolved 0

o(x, 1, 24, V)
0,= max
payar=d

Let ¢(x,y,u,v) be the maximum pairwise distance between the four points.
Then, &, gives the hyperbolicity of structures of size d as a function of d.

Example:
N 7
- o = No— d =1.0
D D
- / N 8¢ =0.16



‘ Example plot
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] Example plot
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] Example plot
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] Example plot
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Max 0 versus diameter of quadruplet

Adcock, Sullivan, and Mahoney (2014)
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What's driving hyperbolicity?
Selected quadruplets, with all geodesics shown

Adcock, Sullivan, and Mahoney (2014)

ER graph (p=1.6) ER graphs (p=32) PL graphs (y=2.25)

PlanarGrid US PowerGrid

a520000102 CA-GrQc VanderbiltFB



Maximum hyperbolicity of network periphery

as20000102 Max Periphery Hyperbolicity by k-core
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Adcock, Sullivan, Hernandez, and Mahoney (2013)

‘ Computing 0: Sampling versus Brute Force

0 Fraction of quadruplets: # of quadruplets
0.0: 0.677473774788751 4577453756970
0.5: 0.313235924997126 2116425779202
1.0: 0.009262044976055 62580404070
1.5: 0.000028008357243 189242691
2.0: 0.000000246259522 1663890
2.5: 0.000000000022835 154

Total 0.999999999401533 6756650846976

Computing & takes O(n#) time; prior works sampled to estimate 6.

E.g., sample about .0002 percent quadruplets; although biased towards pairs at larger distances, this
could still easily miss the maximum é.

It is likely ok for computing average és (but it's not clear if that is useful).

Example below is SNAP graph as20000101 (about 1600 nodes); max delta is achieved on 2 x 102*
percent of quadruplets.

Took >105 CPU hours on Oak Ridge’s NICS Nautilus supercomputer (1016 cores, 4TB shared memory)
stress testing of OpenMP workshare and tasking models to parallelize computations at scale




nother view on 6-hyperbolicity

Chen, Feng, Hu, and Mahoney (2012)

Viewing graphs as geodesic metric spaces (replace edges with length 1 segments
intersecting only at endpoints) provides another way to think of &-hyperbolicity.

For a geodesic triangle, there is a unique isometry to a “tripod” so that except for the
leaves , each point on the tripod has two pre-images on the triangle.

A triangle is 6-thin if the pre-images of every tripod point have distance at most 6.

Y Y

o -/

Classify graphs based on their 6-hyperbolicity relative to the graph diameter (similar
to Jonckheere et al). Say a classis:

= constantly hyperbolic if their &’s are constant, regardless of the size or diameter;

= logarithmically hyperbolic if their 6's are O(log diameter);

= not hyperbolicif their &'s are at the same order as the graph diameters.



Chen, Feng, Hu, and Mahoney (2012)

Definition: A ringed tree is a binary tree with extra edges added that connect all
vertices at a given tree level into a ring.

Theorem [CFHMz22]: This ringed tree model is quasi-isometric to the Poincare disk,
and thus has constant hyperbolicity.
Theorem [CFHMz12]: If long-range edges between the leaves of a ringed tree are
added according to a probability function that decreases:
= exponentially fast with the ring distance, then we get logarithmically hyperbolic
random graphs
= asa power-law with the ring distance, then we get non-hyperbolic random graphs

Theorem [CFHMz22]: If one replaces the ringed tree with a pure binary tree, none of
the resulting graphs are hyperbolic.



Example: Small world graphs
L g

Chen, Feng, Hu, and Mahoney (2012)

&

O
= Kleinberg’'s small-world random graphs:

. . . . O
start with a d-dimensional grid; add long-range
edges between vertices u,v with probability
proportional to 1/dy(u,v)P where p is a parameter

of the model.

(&

O O O
O O O
O

O o O

s Theorem [Kleoo]: Efficient decentralized
O O O ©O

navigation is not attainable unless p = d.

O
O
O
O
O
O

C C O

* Theorem [CFHMa2]: Even at the “sweetspot” of p = d, with high probability,
the small-world graphs are not logarithmically hyperbolic.

* Theorem [CFHM22]: When p <d, the small-world graphs are not hyperbolic;
while when p > 3 and d = 1, the hyperbolic delta is polynomial in the size of graph
and thus is also not logarithmically hyperbolic.

* The point: Long-range edges that enable efficient navigation do not
significantly improve the hyperbolicity of the graphs (relative to their diameter).



] Summary of results for 6 hyperbolicity

* § is expensive, coarse, and brittle

* Scaled and size-resolved 6 reveals small-scale cyclic structures and
large-scale hyperbolic properties in many real graphs

* Constant-degree expanders and well-formed meshes are not
hyperbolic, relative to their diameter

* Even a very little structural heterogeneity enhances hyperbolicity

* Extremely sparse random graphs have very different hyperbolic
properties than only very sparse random graphs

* There is “too much” randomness in existing network generative
models to capture & hyperbolicity properties



‘ Outline

Tree decompositions
* Many practical heuristics developed in scientific computing

* Tool for identifying small-scale and large-scale structure in real graphs



Prior uses of tree decompositions

* Innumerical linear algebra: one often wants to permute the rows of a matrix before

40.}

Width

301 ¥

k=30

i

e e e

11.5x 108

11.x 108

Fill Edges

1500 000.

——  Multiple Minimum Degree

0

200000 400000 600000 800000 1.0x10° 1.2x 10°
[V]+|E|

Comparison of width and fill from 6 heuristics on graphs

known to have tw <= 30

computing a factorization so that the resulting factors are as sparse as possible, so
minimize the number of “fill edges” added.

* Fortree decompositions, we

instead need to minimize the
maximum clique size in the
resulting chordal graph.

Numerous implementations of
common heuristics are available,
and we tested several on a large
set of random graphs with a
fixed maximum width and
varying sizes.

Min-degree-based heuristics are
orders of magnitude faster than
min-fill, etc.



Problems with tree decompositions

Adcock, Sullivan, and Mahoney (2012)

Every bag in a tree decomposition is a vertex separator, so a low-width
decomposition means many small separators.
Bit discrepancies between upper bounds given by min degree/min fill heuristics and
MMD lower bounds
Treewidth is O(n) w/ high probability for many random graphs (Gao 2009):

= Erdos-Renyi graphs G(n,m), when m/n > 1.073.

= Random intersection graphs G(n,m,p) on {1,...m3}, with m=n?, p at least 2/m and a > o.

= Preferential attachment (BA) graphs, with at least 12 new edges for each additional vertex.

Current heuristics optimize treewidth/treelength — but maybe 1 bad bag (e.q.,
consisting of high degree nodes) is OK.

Current heuristics get lost in “local noise”




Examples of (AMD) tree decompositions

Adcock, Sullivan, and Mahoney (2014)

252000102 CA-GrQc

Nmbr of nodes: 4158
Treewidth: 222

Nmbr of nodes: 6474

. “‘\, “’ ‘f/gi’/
Treewidth: 88 \

A411/

PowerGrid FB-Lehigh

Nmbr of nodes: 5073
Treewidth: 2983

Nmbr of nodes: 4941
Treewidth: 21




Adcock, Sullivan, and Mahoney (2014)

d52000102

*— o

Core Interm. Periphery

PowerGrid

T

Periphery

Core Interm.

CA-GrQc

°
® o0

Interm.

FB-Lehigh

Interm.

What do bags look like in real graphs?

4

Periphery

Periphery



K-core versus eccentricity

Adcock, Sullivan, and Mahoney (2014)

d52000102
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., Tree decompositions
] and good-conductance communities

"It is a matter of common experience that communities exist in networks ... Although not precisely defined, communities
are usually thought of as sets of nodes with better connections amongst its members than with the rest of the world.”

Examples of conductance (defn) Examples of conductance (with TDs)

Edges to rest Edges to rest Rest of network

Rest of network
of network of network

Number of bags Number of bags
Low conductance High conductance to cover: 2 to cover: n

(good) community (bad) community



., Tree decompositions
‘ and good-conductance communities

Adcock, Sullivan, and Mahoney (2014)

252000102 CA-GrQc PowerGrid FB-Lehigh

]
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* When small-cardinality good-conductance clusters exist, they are well-localized in the TD (CA-GrQc)

* When small-cardinality bad-conductance clusters are present, they are poorly-localized in the TD (FB-Lehigh)



., Tree decompositions
‘ and bad-conductance communities

Adcock, Sullivan, and Mahoney (2014)

"Communities are just some set of nodes that are similar in a way that may or may not be at all related to the graph.”

Consider communities defined by two types of meta-information (graduation year and residence):

FB-Haverford: | FB-Caltech:
Bags colored by graduation year Bags colored by residence (170)

(red = 2009, blue = pre-2004)



Summary of results for tree decompositions

Previous work says real social graphs are not tree-like by TD measures
* basically since tree-width is large, but restricted internet router and AS networks
Existing TD heuristics are not well-suited to social graphs, but they can be used

* Open problem: develop TD heuristics more appropriate for social graphs

Tree-like core-periphery structure: shown by bag cardinality histograms, mean
bag density versus bag cardinality, & mean k-core versus bag eccentricity plots

* that correlates with & hyperbolicity and k-core structure

* captures larges-scale cycles and small-scale clusters

But there are some high-treewidth bags at deep cores

* tree-like-ness enhanced ad deep cores are removed

» for very social graphs, a huge fraction of nodes are in deep cores

Good-conductance and bad-conductance communities can be identified



‘ Outline

Connections with prior work

* On core-periphery & size-resolved isoperimetric/clustering/community structure



., What do the data “look like” (if you
] squint at them)?

A “hot dog"”? A “tree”? A "point™?

(or pancake that embeds well in (or tree-like hyperbolic (or clique-like or expander-
low dimensions) structure) like structure)



] Squint at the data graph ...

Say we want to find a “best fit” of the adjacency matrix to:

a | P
B ¥
What does the data “look like”? How big are a, B, y?

a=y»f a»fPr»y a=pP=y Pra=y

low-dimensional core-periphery expander or K_ bipartite graph

e B e




‘ Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ¢ of a set S of nodes is:

_ 2ics,jgs iy A(S) = Z Z Ajj
#5) = min{A(S), A(S)} i€S jev

The Network Community Profile (NCP) Plot of the graph is:

O(k) = s ¢(S)

conductance

. . . 1ze
Just as conductance captures the "gestalt” notion of cluster/community quality, the NCP plot
measures cluster/community quality as a function of size\
Since algorithms often

NCP is intractable to compute --> use approximation algorithms! have non-obvious size-
dependent behavior.



=

Jeub, Balachandran, Porter, Mucha, and Mahoney (2014)

NCPs and three types of graphs

Nodes | Edges (k) A2 (C) Description
CA-GRrQC 4158 13422 6.5 | 0.0019 | 0.56 Coauthorship: arXiv general relativity
CA-AsTrROPH | 17903 196972 | 22.0 | 0.0063 | 0.63 Coauthorship: arXiv astrophysics
FB-JOHNS55 5157 186572 | 72.4 | 0.1258 | 0.27 Johns Hopkins Facebook network
FB-HARVARDI | 15086 824595 | 109.3 | 0.0094 | 0.21 Harvard Facebook network
US-SENATE 8974 422335 | 60.3 | 0.0013 | 0.50 | Network of voting patterns in U.S. Senate
US-HOUSE 36646 | 6930858 | 240.5 | 0.0002 | 0.58 | Network of voting patterns in U.S. House

Table 1: Six medium-sized networks. For each network, we show the num-
ber of nodes and edges in the largest connected component (LCC), the mean
degree/strength ((k;)), the second-smallest eigenvalue (As) of the normalized
Laplacian matrix, the mean clustering coefficient ({C;)), and a description.

CA-GrQc US-Senate

FB-Johnssg



NCPs and core-p

Jeub, Balachandran, Porter, Mucha, and Mahoney (2014)
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. Interpretation (of upward-sloping NCP):
A simple theorem on random graphs

Leskovec, Lang, Dasgupta, and Mahoney (2010) Sl —
Let w = (wq,...,w,), where | g [ Dk

w; = ci— /(B 1) B e (2,3). |
Connect nodes 7 and 7 W.p.

Pij = Wiw;/ ) Wk

A

—

¢(conductance)
O

Structure of the G(w) model, with € (2,3).

No cuts in this . . .
region e Sparsity (coupled with randomness) is

the issue, not heavy-tails.

®(1/og n)

A 4

Ollogn)  @(logn) K (number of nodes in the cluster) d (POWGI’ |aWS Wlth [3 € (2,3) glve usS the

Power-law random graph with f € (2,3). appropriate sparsity.)

 This lack of concentration seen in NCP, cut-based, & metric-based tree-like measures.

 Data “looks like” local-structure on global-noise, not small noise on global structure
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Small versus Large Networks
o and networks are very different:
(also, an expander)
o . .

°
% o
L)

o0
o 69

E.g., it these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

N
[l
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0.99
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0.2

0.2

0.2

0.2




Small versus Large Networks

Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

o and networks are very different:

(also, an expander)
' Y




Small-scale to large-scale structure

Jeub, Balachandran, Porter, Mucha, and Mahoney (2014)

CA-GrQc FB-Johnssg US-Senate




] Summary of comparison with previous work

* Existing TD heuristics and 6 hyperbolibity capture similar core-periphery
structure as fast k-core hueristic

* On graphs with upward-sloping NCPs (“extremely sparse” graphs):

* this is captured by NCP plots and stochastic Kronecker graphs, and effects
of lack-of-concentration seenin §, TDs, and NCPs

* On graphs with flat NCPs (“very sparse” graphs):

* small (non-good-conductance) clusters still peripheral in TDs, but many
more nodes in deep cores

* On graphs with downward-sloping NCPs (low-dimensional graphs):

* tree-like core-periphery less meaningful, and there is enough
heterogeneity to cause problems for TD heuristics

* Diffusion based methods (e.qg., both viral propagation and ML algorithms)
behave very differently, loosely captured by structure TD heuristics identify



] Conclusions (on tree-like structure)

Empirical tree-like structure in many realistic informatics graphs
 for both metric-based and cut-based notions of tree-like-ness

* consistent with prior work on local-global isoperimetric NCP properties

Existing methods to quantify tree-like-ness don‘t do the job well

* typically for fairly subtle yet fundamental reasons.

Develop improved tree decomposition heuristics?
* More robust/scalable than hyperbolicity, and used in scientific computing

» Connections with statistical inference

Importance of intermediate-scale structure
* Mediates between very local/small-scale and very global/large-scale

* Local-global properties are a key determinant of behavior of algorithms



