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Modeling spatial and/or temporal behavior is
crucial for progress in science

K CaMO Ky
c \ \
k kc'm k
on on CaM2N
CaM2C caMo @
2N k
off kzc \
2N ~ 2C "
\ on
CaM2C \ CaM4 Cali2
Camac koﬂ \
k KCaMo -
S Kk
kxf'c K2N = \
\ Ko el Ko T kcaM2N




How can we integrate domain insight with data-driven methods
to accelerate and improve spatial and temporal modeling?

Increasing data in computational
science, and traditional modeling
approaches have limitations

Neural networks have an ability to
+ approximate high-dimensional
functions

(computational efficiency, etc.)

Limitations and open questions:

- We still don’t usually have as much data as computer vision, natural language processing, etc.

- What does it mean to respect physical/domain information?

- For example, incorporate constraints to respect spatial invariance through topological methods (in
addition to other physics-informed approaches)



Topics

* Characterizing possible failure modes in physics-informed neural
networks (think: optimization)

* Meaningfully continuous-in-depth neural networks (think: continuity)
* Other related developments (think: temporal/sequential modeling)

e Conclusion



Topics

* Characterizing possible failure modes in physics-informed neural
networks (think: optimization)



Physics-informed neural networks (PINNs):
construct a loss function that should “respect” the physics, and model
differential equations

Burger’s equation describing fluid flow:
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The solution is modeled on a mesh (but not discretized!),
consisting of “space, time” points

Optimization problem:

mein L(u) = Ly, + Ly,

rrbin L(u) st. F(u)=0
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mein L(u) + ArF(u)

Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial
differential equations. J. Comp. Physics. M. Raissi, P. Perdikaris, G.
Karniadakis (2019)

Physics-Informed Deep Learning (Part 1). Arxiv: 1711.10561 M.
Raissi, P. Perdikaris, G. Karniadakis (2017)

Physics-Informed Deep Learning (Part 2). Arxiv:1711.10566

M. Raissi, P. Perdikaris, G. Karniadakis (2017)



Investigating PINNSs

* We systematically investigated common scientific phenomena with PINNs:
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Investigating PINNSs
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Investigating PINNSs

* We systematically investigated common scientific phenomena with PINNs:
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Learning convection with PINNs

8u We have an analytical solution for this system:
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At low speeds of propagation, PINNs learns good models but
error increases as wave speed increases

——Relative error — Absolute error
LA LLELRARL LELLRERAN] LA LLLRRRAN T

‘ 1100
100} :
— r — 1.00
:ﬁ r | :.\ 0.75
\5 L 210—1 E/ 0.50
— -1 ] L 0.25
g 10 i i g b 0.00
g ] s 2
¢ o2 & s
= | ] =) -0.50
w102 | 3 j
C’?:) : | 2 : . To -1.00 . . . 0.6 0.8 1.0
— . 10—3 t t
7‘1‘6‘_‘4‘ 10_3 10_2 10_1 100 101 Exact solution: B = 30 Predicted PINN solution: B =30
5
. ou ou
Convection:. — + 53— =
ot oxr

11



At low speeds of propagation, PINNs learns good models but
error increases as wave speed increases

Exact solution Predicted PINN solution Difference in exact and predicted solution
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Learning reaction with PINNs
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Training a PINN is sensitive to the value of the reaction
coefficient
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Also looked at modeling a reaction-diffusion system with PINNs
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p=>5,v=3

p=5,v=5

Reaction-diffusion examples with PINNs
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Challenges with PINNs

* We study common differential equations, including ones with
convection, reaction, and diffusion operators

* PINNs can be sensitive to the ODE/PDE coefficients (particularly if we
have “sharp” features in the solution)

 We characterize some of the challenges, and then change the
learning paradigm (as compared to the standard ML training)



To better characterize why PINNs fails, we can look at the
loss landscapes in “easy” to learn regimes and “hard” to
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The PINN loss landscape changes as the “amount” of PDE
constraint increases

Trade-off between low regularization, smooth landscapes, and error

m@in L(u) 4+ ArF(u)

x 104 x10°

—m

Relative error 1.00 1.08 0.982
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Building on sight gained for the challenges in training
PINNs, we can address these “failure” modes by changing
the learning paradigm

* Curriculum regularization:

e start training a NN with a simple ODE/PDE, and then slowly make
the problem harder

* Sequence-to-sequence learning:

* Instead of predicting the entire state space, predict for one
temporal segment ("time block”) at a time (“time marching”)

20



Curriculum regularization starts by training the neural network with
a simple ODE/PDE, and then making the problem harder and
harder

—»—Regular training = Curriculum training
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Convection: Curriculum regularization decreases error by 1-2
orders of magnitude
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Convection: Curriculum regularization decreases error by 1-2
orders of magnitude
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Curriculum regularization for the reaction case
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Reaction: Curriculum regularization decreases error by 1-2
orders of magnitude
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The loss landscape provides further insight, and is much
smoother when training via curriculum regularization
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Regular PINN training tries to learn the solution for the

whole state space
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Changing the learning paradigm to sequence-to-sequence learning
can address failure modes: We solve one “time block” at a time

At 2At 3At  4At S5At 6At 7At 8At 9At  10At

t

Exact initial condition

We still assume that we only have the exact solution at t=0 (initial condition). "



Changing the learning paradigm to sequence-to-sequence learning

can address failure modes: We solve one “time block” at a time

X
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AE At 3At AAt BAt B6At 7At  BAt

t

Predicted initial condition for the next time block
Already predicted solution

We still assume that we only have the exact solution at t=0 (initial condition).

9At  10At
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Sequence-to-sequence learning greatly decreases error
for all systems of study

Example: Reaction-diffusion systems

8.0 0.2 0.4 0.6 0.8 1.0 . . 0.4 0.6 0.8 1.0

t t t
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Exact solution, p =5, v=3 Regular PINN solution, p =5, v=3 Seqg2seq PINN solution, p =5, v=3
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decreases error

Reaction-diffusion: sequence-to-sequence learning greatly

Entire state space | At = 0.05 At =0.1

Relative error 5.07 x 10~1 2.04x107% | 1.18 x 10— %

Absolute error 2.70 x 101 1.06 x 107° | 6.41 x 10~ 3

v =3, p=25 | Relative error 7.98 x 107! 1.92 x 1072 | 1.56 x 102
Absolute error 4.79 x 101 1.01 x 1072 | 8.17 x 1073

Relative error 8.84 x 1071 237%x1072 | 1.59 x 102

Absolute error 5.74 x 10~ 1 1.15x 107% | 8.01 x 10—°

= = Relative error 9.35 x 101 2.36 x 1072 | 2.39x 102
Absolute error 6.46 x 101 1.09 x 102 | 1.15 x 102

v==06,p= Relative error 9.60 x 107! 2.81 x 1072 | 2.69 x 10~2
Absolute error 6.84 x 107! 1.17 x 1072 | 1.28 x 102




Reaction: sequence-to-sequence learning greatly decreases

error
Entire state space | At = 0.05 At =0.1
p=5 | Relative error 9.79 x 10~" 7.06 X 1072 | 7.09 x 10~°
Absolute error 5.40 x 1071 252x 1072 | 2.39 x 102
p =06 | Relative error 9.88 x 107! 8.25 x 1072 7.78 x 1072
Absolute error 5.88 x 1071 3.02x 1072 | 2.65 x 1072
p=7T | Relative error 9.92 x 1071 8.16 x 1072 | 7.56 x 102
Absolute error 6.31 x 1071 3.03x10“ | 2.69 x 10~ *
p =38 | Relative error 9.94 x 10~1 8.19x 1072 | 7.44 x 10~2
Absolute error 6.69 x 101 3.10x 1072 | 2.73 x 102
p =9 | Relative error 9.95 x 1071 7.02 X 1072 | 8.63 x 1072
Absolute error 7.02 x 1071 2.83 x 1072 | 3.21 x 1072
p =10 | Relative error 9.96 x 101 6.88 X 1072 | 7.47 x 1072
Absolute error 7.31 x 1071 2.85 x 1072  2.85 x 102

32



Summary on the analysis for physics-informed
neural networks

* PINNs is a promising and popular method that works for certain cases
— we analyze PINNs for common common scientific problems
(convection, reaction, reaction-diffusion)

* The “regularization” term (the PDE constraint) in PINNs can make the
loss landscape very hard to optimize

e Rethinking “standard” machine learning training: changing the
learning paradigm can greatly decrease error with curriculum
regularization, sequence-to-sequence learning

A.S. Krishnapriyan, A. Gholami, S. Zhe, R. M. Kirby, M. W. Mahoney. Characterizing possible failure modes in
physics-informed neural networks. Neural Information Processing Systems (NeurlPS), 2021.



Any More Failure Modes?

* If we try to learn a continuous model from discrete data, do we?

e What does it even mean to learn a continuous model?



Topics

* Meaningfully continuous-in-depth neural networks (think: continuity)



Continuous-in-Depth Neural Networks*

Joint with Alejandro Queiruga (LBNL -> Google Research), N. Benjamin Erichson (ICSI and UC Berkeley ->
Pitt), Dane Taylor (U Buffalo), and Liam Hodgkinson (ICSI and UC Berkeley)

"Continuous-in-Depth Neural Networks," Queiruga, Erichson, Taylor, and Mahoney, arXiv:2008.02389.

"Compressing Deep ODE-Nets using Basis Function Expansions," Queiruga, Erichson, Hodgkinson, and Mahoney, arXiv:2106.10820
and NeurlIPS21.

“Learning Continuous Models for Continuous Physics,” Krishnapriyan, Queiruga, and Mahoney, to be submitted.



Connection between ResNets and Dynamical Systems

e ResNets are the most popular network architectures on the market.

unit unit

Tt Ti41 Lt42
Rt(ZUt,@t) Rt+1(xt+1;9t+l)

e Hypothesis: Recent literature notes that ResNets learn a forward Euler discretization
of a dynamical system:

N 0x(t)
ot

Tkl = Tk + AtR(ZEk, Hk) = R(x(t),t,0)

=1 sneak it in

e Spoiler: we show that ResNets are not forward Euler discretizations of a dynamical
system in a meaningful way due to overfitting.



Experiments in Dynamics

e What does it even mean to say ResNet learns a forward Euler representation of a
dynamical system?

e We need context where a dynamical system is meaningful.

e So..let’s try time series prediction of a dynamical system.
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Numerical Integration and Machine Learning work in
Opposite Directions

Numerical Integration: Learning the Dynamics:
Ground Truth Dynamics What's G???
_ dx
S = G(x; 0)
Approximation yields a model Use data to optimize a model
Xne1 = X + ALf(xy) min ||x,41 — (x, + A1 G(xp))||
o ~ J/ " ~~ >
‘ Inferred Time Series , Ground Truth Time Series
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Revisiting a Simple Dynamical System

e Learning a residual makes sense in many contexts:
Future = Now + Update
e Let’s study training such a F(x) based on a neural network G(x):
x(t+At) = F(x(t)) = x(t1)+G(x(t)) = NumericalMethod[ G(X)]

e Numerical integrators approximate the integral with a discrete series of applications of
f(x,t)=dx/dt for a time step At:

1+At
x(t + At) = x(t) + / f(x, t)dt
t

~ x(t) + schemel f, x, t, At]



Syntactic Similarity is not Sufficient for Correspondence

e Approximations to dynamical systems have richer properties.

A. For a given integrator, as At—> 0, error—» 0 (timestep refinement)

A. Integrators have a rate of convergence: log(error) « r log(At)

A. The same dx/dt with different integrators should approach the same x(t,,,, ) at
their respective rates

e We can verify these using a convergence test.

e These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)



Does ResNet Units Satisfies these Properties?

e Ifyes, then we should be able to alter the model:
xk+1=xk+At G(xk +At/2G(xk))

Given G:  Xg.1=X+At G(x; )

Plug the frozen G into other
graphs
Increase or Decrease At _
xk+1—xk+RK4[G,At](xk)

e and predictions should change consistently as expected.

e If no, then the model should behave differently w.rt. At.



Experiment

Make a dataset with one At: {x(0), x(At), x(2At)... x(T)}

Train 3 models using G: a shallow tanh NN with 50 hidden units.
Then, freeze G, and perform a convergence test.

Hypothesis: A, B, & C should hold.

P w N R

We train three models:

1. Forward Euler: x,,;= x, + At G(x, ) & Looks like a ResNet unit
2.  Midpoint: Xee1= X + At G(x +At/2G(x, )
3. RK4: Xeo1= X, + At RKA[G,At](x, )

e For ground-truth, use the analytical solution.
e For comparison, plug the known dx/dt into the integrators.



After we train the models, they all perform good

e They are good discrete models without changing At.
e Note how using Euler as a numerical method is inaccurate.

6 | -B- Ground Truth 6 1
—o— Numerical Euler 4 -
4 —4— ODE-Net(Euler)
—o— ODE-Net(RK4) 2
3 2 T 01
0 - ~2 -
_4 -
_2 -

_6 .

0 2 4 6 8 10 0 2 4 6 8 10

Time Time

(a) At = Atdata



But if we cut At in half, ODE-Net(Euler) gets worse

e Numerical(Euler) improves, as expected.
e Neural(RK4) is still on top of the analytical solution.

p(t)
v(t)
o

0 2 4 6 8 10 0 2 4 6

(b) At = 0.5Atqata
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One-off plots aren’t sufficient

100 _

10—2_

Error

10—4_

1076

Sweep At and calculate errors to do the full convergence test.

Part 1: At— 0 with same graph

—*= ODE-Net(Euler)
— ODE-Net(Midpoint)
—+— ODE-Net(RK4)

10-1 10°

Inference At

10!

More time steps

100 ]

10—2_

10—4_
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Part 2: Try different integrators

—o— Euler — Midpoint
=4+ Euler — RK4
—&— Midpoint — Euler
—4— Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint
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Implications

e Our results show that our prevalent training methodology does not yield models that
can be interpreted with continuous theory.

e Having a peak says that it’s fragile to the number of timesteps.
That means, we can’t do “interpolation”.

e The RK4 scheme enables us to interpolate between domain shifted data.

In turn, this means that we can increase the number of layers (i.e., be continuous-in-
depth).

e Our analysis can be seen as a diagnostic tool to assess if the model has overfit: how
well does it represent a continuous system, and how well does it exhibit the numerical
properties of a continuous operator?



Continuous-in-Depth Neural Networks

ContinuousNet is a deep model that is a dynamical system:
e Basis functions in depth for parameters.
e High-order Runge Kutta-based computation graphs.

e Right timestep refinement and grid refinement.

Goal: recover (then extend) the exact same graph as ResNet, but phrased as a function of
time.

/ NEZN NEZN NEZN

Conv OdeBlock OdeBlock OdeBlock Avg

input | | 3x3 b|Poolp| FC b
1x1

/ NR, 66N NR, 66N NR, 6(t)

output




Experiments for Image Classification

The original hypothesis can be tested with a convergence test on a DL problem
using ContinuousNet.

Updated hypothesis:
e Expect forward Euler (ResNet) to overfit

e Expect training with Midpoint or RK4 to enable transfer between depths
and graph modules



We can perform the same experiment on CIFAR10
e Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
e ContinuousNet(Euler): same dip as pendulum
e ContinuousNet(RK4): re-manifests with many N, and integrators

100
70 —— Euler ~
y —0— RK4-Classic
50 1
X 40 A
5 30 M —
~ 204
§ —#— Euler » RK4-3/8
—4— RK4-Classic » RK4-3/8
10': ] —8— RK4-Classic = Euler
6_:::::::: .... . ....... . ............ .. ......... P el el AEXLEE - : | ........... S
0 20 40 60 80 0 20 40 60 80

Computational Graph Depth N; = 1/At Computational Graph Depth N; = 1/At



Why ContinuousNet?

e Infinitely many computer programs exist for a problem.
e We choose to find one that is a continuous trajectory.

e ContinuousNet has infinitely many (approximately) equivalent graph
manifestations and basis set projections.

e This opens the door to better understanding and new tricks post-training and
during-training.



Looking at the harmonic oscillator example
with ODE-Nets

* The harmonic oscillator can be written as two coupled first-order

differential equations: dz
=y

- = < r<ty »l
! @
d compressed (x < 0)
Y
— = —X < r=k »
dt
equillibrium (x = 0)
r>r,

x(0), z(At), x(2A1)...x(tmaz)

Train an ODE-Net on: < C >
y(0), y(AL), y(2AL)..y (tmaz) Q@ g

x(t + At) = z(t) + G(z(t)) = Numerical Method|G(z(t)]

1+At
x(t + Ar) = x(t) + / f(x, t)dt

~ x(t) + schemel f, x, t, At]

Scheme: Euler, Midpoint, RK4, etc.
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Harmonic oscillator: Training at one At and evaluating at
another At gives incorrect results — contrary to how numerical
integrators behave (where error goes down as At decreases)

All models are trained with a At = 0.5 between data
points: Euler-Net and Midpoint-Net get worse when
they are evaluated away from the trained At

(d) Evaluated on At = 0.65 (e) Evaluated on At = 0.80 (f) Evaluated on At = 0.95

—— Euler-Net — Midpoint-Net —— RK4-Net - - - Numerical
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Error

Error as a function of At shows that some of the ODE-Nets
diverge from the behavior of a numerical integrator

T T T 171 \\
109 g ==
1071
5107 5
w i
1073
107 ¢
10—57 I L1 1eiil I [ L Ll 10—5 I I Lol 4 | I Lol
1073 1072 1071 10° 1072 1071 100
Evaluated At Evaluated At Evaluated At
Trained on At = 0.01 Trained on At = 0.05 Trained on At =0.5
—— Euler-Net —— Midpoint-Net —— RK4-Net

=== Numerical Euler - - - Numerical Midpoint - - - Numerical RK4
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We have a diagnostic method for whether or not we learned a
continuous model, which is applicable across many systems

10*

_ 5 101 ==
Non-linear pendulum 3

103

103 '1()‘*2 1()‘*1 10° 0 2 4 0 s 10
At Time
10!
Cartesian pendulum 510" A =
(xy-space): stiff . ) ' T
10-?
10— 1072 101 100
At
—— Euler-Net —— Midpoint-Net ~— RK4-Net
=== Numerical Euler - -- Numerical Midpoint - - - Numerical RK4
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Using this method, once we have learned the underlying continuous
dynamics, we can evaluate a problem in multiple scenarios

——  Euler-Net ——  Midpoint-Net RK4-Net
--- Numerical Euler - - - Numerical Midpoint Numerical RK4
101:““\ T T “‘_“_‘J--"' i :"" T i
z 107
2 ;
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At distribution r.’
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o Training data RK4—Net_ o Training data Finely resolved solution - - - Actual solution
—— Euler-Net  --- Actual solution ‘ ‘ ‘ ‘ ‘ ‘
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Topics

* Other related developments (think: temporal/sequential modeling)



Lipshitz RNNs
Lipschitz Recurrent Neural Network (ICLR 2021)2

» We can view RNNs as dynamical systems whose temporal evolutions are governed by an
abstract system of differential equations with an external input:

h(t) = o(Wh+Uz+b), (5)
y = Dh. (6)

» We propose a continuous-time recurrent unit that describes the hidden state's evolution
with two parts: a well-understood linear component plus a Lipschitz nonlinearity.

h = Ah+o(Wh+Uz+b)
We assume that the nonlinearity o is an M-Lipschitz function.

"Lipschitz Recurrent Neural Networks," Erichson, Azencot, Queiruga, Hodgkinson, and Mahoney, arXiv:2006.12070, ICLR21.



Lipshitz RNNs

Empirical Evaluation

Table 1: Evaluation accuracy on ordered and permuted pixel-by-pixel MNIST.

Name ordered permuted N  # params
LSTM baseline by (Arjovsky et al.|2016] 97.3% 92.7% 128  ~68K
MomentumLSTM (Nguyen et al.. 2020 99.1% 94.7% 256  =270K
Unitary RNN (Arjovsky et al.[2016) 95.1% 91.4% 512 ~9K
Full Capacity Unitary RNN (Wisdom et al ] 96.9% 94.1% 512 ~270K
Soft orth. RNN (Vorontsov et al.; 2017 94.1% 91.4% 128 ~18K
Kronecker RNN (Jose et al./2018} 96.4% 945% 512 =I11K
Antisymmteric RNN (Chang etal.|2019) 98.0% 95.8% 128  ~=I0K
Incremental RNN (Kag et al.. 2 98.1% 95.6% 128  ~4K/8K
Exponential RNN (Lezcano-Casado & Martinez-Rubio/ ?019} 98.4% 96.2% 360  ~69K
Sequential NAIS-Net (Ciccone et al.; 2018) 94.3% 90.8% 128 ~18K
Lipschitz RNN using Euler (ours) 99.0% 94.2% 64 ~9K
Lipschitz RNN using RK2 (ours) 99.1% 94.2% 64 ~9K
Lipschitz RNN using Euler (ours) 99.4% 96.3% 128 ~34K
Lipschitz RNN using RK2 (ours) 99.3% 96.2% 128  =34K

"Lipschitz Recurrent Neural Networks," Erichson, Azencot, Queiruga, Hodgkinson, and Mahoney, arXiv:2006.12070, ICLR21.

Robustness with Respect to Input Perturbations

test accuracy
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Noisy RNNs

Noisy Recurrent Neural Networks (NeurlPS 2021)

Let = be an input signal, we consider the following (Itd) SDE model
dht =f(ht,il?t)dt+0(ht,$t)dBt, Yt =Vht, (13)

where (B;¢):>0 is an r-dimensional Brownian motion.

» The functions f and o are referred to as the drift and diffusion coefficients, respectively.

>
f(h,z) = Ah+ a(Wh + Uz + b), (14)
where a : R — R is a Lipschitz continuous scalar activation function.
>
o(h,z) = e(o1] + oodiag(f(h,x))), (15)

where the noise level € > 0 is small, and o1 > 0 and o2 > 0 are tunable parameters

» Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of the learning model against data perturbations.

"Noisy Recurrent Neural Networks," Lim, Erichson, Hodgkinson, M. W. Mahoney, arXiv:2102.04877, NeurlPS21.



Noisy RNNs

Results for Electrocardiogram (ECG) Classification

test accuracy

Table 2: Robustness w.r.t. white (o) and multiplicative (oar) noise perturbations on the ECG task.

o=08 oc=12 [ omM=04 op=08 opy=12

Name clean o0=04
Antisymmetric RNN 97.1% 96.6%
CoRNN 97.5% 96.8%
Exponential RNN 97.4%  95.6%
Lipschitz RNN 97.7% 97.4%

Noisy RNN (mult./add. noise: 0.03/0.06) 97.7% 97.5%

91.6% 77.0% 96.6% 94.6% 91.2%
929% 87.2% 93.9% 85.4% 78.4%

86.4% 76.7% 95.7%

89.4% 81.3%

95.1%  88.9% 97.6% 97.0% 95.6%
96.3% 92.6% 97.7% 97.3% 96.5%

1.00
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e =
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(a) Additive white noise perturbations.

0.00 0.25 050 0.75 1.00 1.25 1.50 1.75
amount of noise

(b) Multiplicative white noise perturbations.

Regularization Induced by Noise Injection

Theorem 2: Implicit regularization induced by noise injection

Under mild assumption on f and o,

M

m=1

Moreover,

for Cq,CRr > 0 independent of A.

as € — 0, where the terms Q and R are given by

M
Q(R®) = VIR D ok—1®dm_1.k

k=1

2
E(h},) = €Ay + SIQ(F) + R(A)] + O(),

M-1
Z Om—1Vec vm,

m=1

R(R%) = Z 5m—1t’(0g—1‘i’;{1—1,mH561 Srr—1mom—1),

with vec vy, a vector with the pth component (p=1,...,dp):

[om]? = tr(oh, 1831 —0 m Hps [Fr]P®rr—2,mom—1).

|Q(R?)| < CoA2, |R(R?)| < CRrA,

(16)

@an

(18)

(19)

(20)

"Noisy Recurrent Neural Networks," Lim, Erichson, Hodgkinson, M. W. Mahoney, arXiv:2102.04877, NeurlPS21.




LEMs

From Multi-Resolution to Long Expressive Memory Units

» A simple example of a system of two-scale ODEs is given by

d d
d_:‘;zTy(a'(Wyz—}—Vyx—i—by)—y), d—j=7’z(0(wzy+vzx+bz)_z)- (21)

» Here 1, and 7, are the two time scales,
» y(t) € R%, and z(t) € R% are the vectors of slow and fast variables.

» Two scales (one fast and one slow) are not enough for for complicate problems, in practice.

» We can generalize this idea to a multiscale version, provided by the following set of ODEs,

d
d_zt/ = 6 (Way + Vau+by) @ (0 (Wyz + Vyu+by) —y),
(22)
d
d—‘: =6(Wiy+Viu+by) @ (0 (W.y+ Vou+b,)—2).

"Long Expressive Memory for Sequence Modeling," Rusch, Mishra, Erichson, and Mahoney, arXiv:2110.04744.



LEMs

. . . . Results
Training Long Expressive Memory Units
Table 3: Test accuracies on Googlel2 (benchmark for speech recognition).
Model test accuracy  # units  # params
» We discretize the system of ODEs with using an implicit-explicit time-stepping scheme tanh-RNN  73.4% 128 27k
LSTM 04.9% 128 107k
At = At6(Wiy,_1 + Viu, +b GRU 05.2% 128 80k
e (Wiyn e 1), expRNN  02.3% 128 19k
Aty = At6(Wayn_1 + Vau, + bo), (23) coRNN 94.7% 128 44k
LEM 95.7% 128 107k
Zn = (1 = Atn)QZn—l +Atn®U(Wzyn—l +Vzun+bz)7 -
Yn=(1—Atp)OYn_1+ At, © 0(Wyzn + Vyu, + by).
Table 4: Test L? error on heart-rate prediction.
» The particular model mitigates the exploding and vanishing gradients problem.
» We can show that this model is a universal approximation of general dynamical systems, Model test L? error  # units  # params
» and also a universal approximation of multiscale dynamical systems. Eathe e e o
expRNN 1.63 256 34k
coRNN 1.61 128 34k
UnICORNN (3 layers) 1.31 128 34k
LEM 0.85 128 67k

"Long Expressive Memory for Sequence Modeling," Rusch, Mishra, Erichson, and Mahoney, arXiv:2110.04744.



Topics

e Conclusion



Conclusion

* Grand challenge: Combining domain-driven scientific models
and data-driven machine learning models

* Fundamental foundational question for data science

* Lots of obvious, but even more non-obvious, challenges
* We looked at several, but many others

* Failure to address the challenge = failure to deliver on the
promise ...



