Continuous Network Models for Sequential Predictions

Michael W. Mahoney

ICSI, LBNL, and Dept of Statistics, UC Berkeley

http://www.stat.berkeley.edu/~mmahoney/

January 2022

(Joint work with N. Benjamin Erichson (University of Pittsburgh); and also with Liam Hodgkinson (ICSI and UCB), Alejandro Queiruga (LBNL \rightarrow Google), Soon Hoe Lim (KTH Royal Institute), and Omri Azencot (UCLA \rightarrow Ben-Gurion).

Outline

Introduction

Introduction

Many interesting problems exhibit multi-scale and non-linear temporal structures, for instance, turbulent fluid flows, climate and vision.

- Neural networks provide a flexible and powerful framework for sequential data modeling.
- The aim is to map a sequence $\mathbf{x}_0, \ldots, \mathbf{x}_N \in \mathbb{R}^m$ to a target sequence $\mathbf{y}_0, \ldots, \mathbf{y}_K \in \mathbb{R}^d$.

But, Neural Networks are Brittle and Prone to Fail

For Example, Adversarial Examples

clean example

adversarial perturbation

adversarial example

"king penguin" 62.8% confidence

"panda" 89.7% confidence

Szegedy et al. "Intriguing properties of neural networks." ICLR (2014).

▶ Goodfellow et al. "Explaining and harnessing adversarial examples." ICLR (2015).

・ロット 4回ッ 4回ッ 4回ッ 4日ッ

Leveraging Ideas from Dynamical Systems

Viewing DNNs from a dynamical systems and control theoretic point of view provides us with powerful tools to study the stability and long-term behavior of neural networks.

Hope: The dynamical system perspective can help us to better understand black-box ML methods as well as to help us to design more robust models.

Connection between Deep Learning and Differential Equations

The essential building blocks of ResNets are so-called residual units.

$$x_{t+1} = x_t + \mathcal{R}_t(x_t; \theta_t). \tag{1}$$

▶ The function $\mathcal{R}_t : \mathbb{R}^n \to \mathbb{R}^n$ denotes the *t*-th residual module (a non-linear map), parameterized by θ_t , which takes a signal $x_t \in \mathbb{R}^n$ as input and returns $x_{t+1} \in \mathbb{R}^n$.

Connection between Deep Learning and Differential Equations

The essential building blocks of ResNets are so-called residual units.

$$x_{t+1} = x_t + \mathcal{R}_t(x_t; \theta_t). \tag{1}$$

▶ The function $\mathcal{R}_t : \mathbb{R}^n \to \mathbb{R}^n$ denotes the *t*-th residual module (a non-linear map), parameterized by θ_t , which takes a signal $x_t \in \mathbb{R}^n$ as input and returns $x_{t+1} \in \mathbb{R}^n$.

Now, consider an ODE that takes the form:

$$\frac{dx(t)}{dt} = \mathcal{R}(x(t);\theta_t).$$
(2)

The form of forward Euler draws a connection between ODEs and residual units

$$x_{t+1} = x_t + \Delta t \ \mathcal{R}(x_t; \theta_t)). \tag{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Connection between Architecture Design and Numerical Methods

▶ Algebraically, a residual unit *also* closely resembles many time-stepping schemes

$$x_{t+1} \approx x_t + \Delta t \cdot \text{scheme} \left[\mathcal{R}, x_t, \Delta t\right],$$

where scheme represents one step of a numerical integration scheme.

This connection between numerical methods and neural networks has provided inspiration for the design of many new network architectures: PolyNet, FractalNet, RevNet, etc.

Numerical Integration and ML Work in Opposite Directions

- When a numerical integrator is used in scientific computing, we start with a differential equation, and we formulate a discrete model which can produce discrete data.
- Learning a model using a data-driven approach, however, works in the opposite direction. i.e., we fit a discrete model to a collection of discrete data points.

Example: Nonlinear Pendulum¹

- It is 'misleading' to interpret an ODE-Net(Euler) model as a forward Euler discretization of the differential equation, despite having a similar algebraic form.
- ▶ That is, the analogy of a ResNet to forward Euler is superficial and at best incomplete.
- In contrast, ODE-Net(Midpoint) and ODE-Net(RK4) can meaningfully be interpreted as a discrete approximation to a continuous dynamical system.

¹Continuous-in-Depth Neural Networks (arXiv:2008.02389)

Stability of Linear Neural Networks

We might be interested to study whether latent trajectories of a neural networks under small perturbations of the initial condition (input) x₀, are stable.

▶ This is easy to check for simple linear neural networks.

A linear neural network $\mathbf{A}: \mathbb{R}^k \to \mathbb{R}^k$ that maps \mathbf{x}_t to \mathbf{x}_{t+1} given by

$$\mathbf{x}_{t+1} = \mathbf{A}(\mathbf{x}_t) \quad t = 0, 1, 2, \dots$$

is stable if all trajectories that starting arbitrarily close to the origin (in a ball of radius δ) remain arbitrarily close (in a ball of radius ϵ).

Vanishing and Exploding Gradients Problem

Training gradient-based sequential models is difficult.

▶ Consider the following linear DT dynamical system $h_{t+1} = Ah_t$, then it follows

$$x_{t+s} = A^s x_t = (A_s \circ \dots \circ A_1)(x_t) \tag{4}$$

Depending on the eigenvalues of A, there are three situations that can occur

Outline

Introduction

Basic Recurrent Unit

- Recurrent units are networks with *feedback connections*.
- RNNs can use their hidden state (memory) to process variable length sequences of inputs.
- Challenge: RNNs are known to have stability issues and are difficult to train, most notably due to the vanishing and exploding gradients problem.

Lipschitz Recurrent Neural Network (ICLR 2021)²

We can view RNNs as dynamical systems whose temporal evolutions are governed by an abstract system of differential equations with an external input:

$$\int \dot{h}(t) = \sigma(Wh + Ux + b), \tag{5}$$

$$y = Dh. (6)$$

²Lipschitz Recurrent Neural Networks (ICLR 2021).

Lipschitz Recurrent Neural Network (ICLR 2021)²

We can view RNNs as dynamical systems whose temporal evolutions are governed by an abstract system of differential equations with an external input:

$$\int \dot{h}(t) = \sigma(Wh + Ux + b), \tag{5}$$

$$y = Dh. (6)$$

We propose a continuous-time recurrent unit that describes the hidden state's evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity.

$$\dot{h} = Ah + \sigma(Wh + Ux + b)$$

We assume that the nonlinearity σ is an *M*-Lipschitz function.

²Lipschitz Recurrent Neural Networks (ICLR 2021).

Stability Analysis of Lipschitz Recurrent Units

Assuming that σ is an M-Lipschitz function, we prove that our model is globally exponentially stable under some mild conditions on A and W.

Theorem 1

Let h^* be an equilibrium point of a DE of the form $\dot{h} = Ah + \sigma(Wh + Ux + b)$ for some $x \in \mathbb{R}^p$. The point h^* is globally exponentially stable if

• the eigenvalues of $A^{\text{sym}} := \frac{1}{2}(A + A^T)$ are strictly negative,

```
W is non-singular,
```

- and $\sigma_{\min}(A^{\text{sym}}) > M\sigma_{\max}(W)$.
- ▶ The proof relies on the classical Kalman-Yakubovich-Popov lemma and circle criterion.
- Intuitively, global exponential stability is guaranteed if the matrix A has eigenvalues with real parts sufficiently negative to counteract expanding trajectories in the nonlinearity.

Symmetric-Skew Hidden-to-Hidden Matrices

We propose the following symmetric-skew decomposition for constructing hidden matrices:

$$S_{\beta,\gamma} \coloneqq (1-\beta) \cdot (M+M^T) + \beta \cdot (M-M^T) - \gamma I.$$
(7)

• Using this construction, we can easily bound the spectrum via the parameters β and γ .

Proposition 1

Let $S_{\beta,\gamma}$ satisfy (7), and let $M^{\text{sym}} = \frac{1}{2}(M + M^T)$. The real parts $\Re \lambda_i(S_{\beta,\gamma})$ of the eigenvalues of $S_{\beta,\gamma}$ lie in the interval

$$[(1-\beta)\lambda_{\min}(M^{\text{sym}}) - \gamma, (1-\beta)\lambda_{\max}(M^{\text{sym}}) - \gamma].$$

Illustration of the Symmetric-Skew Decomposition

- Our symmetric-skew scheme allows us to construct hidden-to-hidden matrices that exhibit dynamics with moderate decay and growth behavior.
- This helps to mitigate the problem of exploding and vanishing gradients.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Putting it All Together

Our Lipschitz recurrent neural network takes the functional form:

$$\begin{cases} \dot{h} = A_{\beta_A,\gamma_A}h + \tanh(W_{\beta_W,\gamma_W}h + Ux + b), \\ y = Dh, \end{cases}$$
(8a)
(8b)

▶ The hidden-to-hidden matrices $A_{\beta,\gamma} \in \mathbb{R}^{N \times N}$ and $W_{\beta,\gamma} \in \mathbb{R}^{N \times N}$ are of the form

$$A_{\beta_A,\gamma_A} = (1 - \beta_A)(M_A + M_A^T) + \beta_A(M_A - M_A^T) - \gamma_A I$$
(9a)

$$W_{\beta_W,\gamma_W} = (1 - \beta_W)(M_W + M_W^T) + \beta_W(M_W - M_W^T) - \gamma_W I,$$
 (9b)

where $\beta_A, \beta_W \in [0, 1]$, $\gamma_A, \gamma_W > 0$ are parameters and $M_A, M_W \in \mathbb{R}^{N \times N}$ are matrices.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Training Continuous-time Recurrent Units

• Letting $f(h,t) = Ah + \tanh(Wh + Ux(t) + b)$ so that $\dot{h}(t) = f(h,t)$, the approximate solutions for h_{t+1} given h_t are given by

```
h_{t+1} \approx h_t + \Delta t \cdot \texttt{scheme}\left[f, h_t, \Delta t\right] \;,
```

where scheme represents one step of a numerical integration scheme.

Empirical Evaluation

Name	ordered	permuted	Ν	# params
LSTM baseline by (Arjovsky et al., 2016)	97.3%	92.7%	128	$\approx 68 \mathrm{K}$
MomentumLSTM (Nguyen et al. 2020)	99.1%	94.7%	256	$\approx 270 \mathrm{K}$
Unitary RNN (Arjovsky et al., 2016)	95.1%	91.4%	512	$\approx 9 \mathrm{K}$
Full Capacity Unitary RNN (Wisdom et al., 2016)	96.9%	94.1%	512	$\approx 270 \mathrm{K}$
Soft orth. RNN (Vorontsov et al., 2017)	94.1%	91.4%	128	$\approx 18 \mathrm{K}$
Kronecker RNN (Jose et al., 2018)	96.4%	94.5%	512	$\approx 11 \text{K}$
Antisymmteric RNN (Chang et al., 2019)	98.0%	95.8%	128	$\approx 10 \mathrm{K}$
Incremental RNN (Kag et al., 2020)	98.1%	95.6%	128	$\approx 4 \text{K} / 8 \text{K}$
Exponential RNN (Lezcano-Casado & Martinez-Rubio, 2019)	98.4%	96.2%	360	$\approx 69 \mathrm{K}$
Sequential NAIS-Net (Ciccone et al., 2018)	94.3%	90.8%	128	$\approx 18 \mathrm{K}$
Lipschitz RNN using Euler (ours)	99.0%	94.2%	64	$\approx 9 \mathrm{K}$
Lipschitz RNN using RK2 (ours)	99.1%	94.2%	64	$\approx 9 \mathrm{K}$
Lipschitz RNN using Euler (ours)	99.4%	96.3%	128	$\approx 34 \mathrm{K}$
Lipschitz RNN using RK2 (ours)	99.3%	96.2%	128	$\approx 34 \mathrm{K}$

Table 1: Evaluation accuracy on ordered and permuted pixel-by-pixel MNIST.

Robustness with Respect to Input Perturbations

Outline

Introduction

From Good Old RNNs to SDEs: An Illustration

► Two steps:

(1) Adding leaky integrator ("damping" term):

$$h_{t+1} = \alpha h_t + \beta f(h_t, x_t) \tag{10}$$

(2) Injecting noise (various motivations and benefits):

$$h_{t+1} = \alpha h_t + \beta f(h_t, x_t) + \theta \xi_t, \quad \alpha, \beta, \theta > 0,$$
(11)

where the ξ_t are i.i.d. random vectors (e.g., zero mean Gaussian)

From Good Old RNNs to SDEs: An Illustration

Two steps:

(1) Adding leaky integrator ("damping" term):

$$h_{t+1} = \alpha h_t + \beta f(h_t, x_t) \tag{10}$$

(2) Injecting noise (various motivations and benefits):

$$h_{t+1} = \alpha h_t + \beta f(h_t, x_t) + \theta \xi_t, \quad \alpha, \beta, \theta > 0,$$
(11)

where the ξ_t are i.i.d. random vectors (e.g., zero mean Gaussian)

Setting $\alpha = 1 - \gamma \Delta t$, $\beta = \Delta t$, $\theta = \sqrt{\Delta t}\sigma$ and $\xi_t = i.i.d$. standard Gaussian, we get Euler-Mayurama approximation of the stochastic differential equation:

$$dh_t = -\gamma h_t dt + f(h_t, x_t) dt + \sigma dB_t, \quad t \in [0, T],$$
(12)

where $(B_t)_{t\geq 0}$ is a Brownian motion.

Noisy Recurrent Neural Networks (NeurIPS 2021)

Let x be an input signal, we consider the following (Itô) SDE model

$$dh_t = f(h_t, x_t) dt + \sigma(h_t, x_t) dB_t, \qquad y_t = Vh_t,$$
(13)

where $(B_t)_{t\geq 0}$ is an *r*-dimensional Brownian motion.

The functions f and σ are referred to as the *drift* and *diffusion* coefficients, respectively.

Noisy Recurrent Neural Networks (NeurIPS 2021)

Let x be an input signal, we consider the following (Itô) SDE model

$$dh_t = f(h_t, x_t) dt + \sigma(h_t, x_t) dB_t, \qquad y_t = Vh_t,$$
(13)

where $(B_t)_{t\geq 0}$ is an *r*-dimensional Brownian motion.

The functions f and σ are referred to as the *drift* and *diffusion* coefficients, respectively.

$$f(h, x) = Ah + a(Wh + Ux + b),$$
 (14)

where $a : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous scalar activation function.

$$\sigma(h, x) = \epsilon(\sigma_1 I + \sigma_2 \operatorname{diag}(f(h, x))), \tag{15}$$

where the noise level $\epsilon > 0$ is small, and $\sigma_1 \ge 0$ and $\sigma_2 \ge 0$ are tunable parameters

Noise injection can be viewed as a stochastic learning strategy used to improve robustness of the learning model against data perturbations.

Robustness with Respect to Input Perturbations

Table 1: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name	clean	$\sigma = 0.1$	$\sigma = 0.2$	$\sigma = 0.3$	$\alpha = 0.03$	$\alpha = 0.05$	$\alpha = 0.1$
Antisymmetric RNN	97.5%	45.7%	22.3%	17.0%	77.1%	63.9%	42.6%
CoRNN	99.1%	96.6%	61.9%	32.1%	95.6%	88.1%	58.9%
Exponential RNN	96.7%	86.7%	58.1%	33.3%	83.6%	70.7%	43.4%
Lipschitz RNN	99.2 %	98.4%	78.9%	47.1%	97.6%	93.4%	73.5%
Noisy RNN (mult./add. noise: 0.02/0.05)	99.1%	98.9 %	92.2%	73.5%	98.5 %	97.1 %	85.5%

Electrocardiogram (ECG) Classification

- ▶ The Electrocardiogram (ECG) classification task aims to discriminate between normal and abnormal heart beats of a patient that has severe congestive heart failure.
- \blacktriangleright We use 500 sequences of length 140 for training, and 4,000 sequences for testing.

Results for Electrocardiogram (ECG) Classification

Table 2: Robustness w.r.t. white (σ) and multiplicative (σ_M) noise perturbations on the ECG task.

Name	clean	$\sigma = 0.4$	$\sigma = 0.8$	$\sigma = 1.2$	$\sigma_M = 0.4$	$\sigma_M = 0.8$	$\sigma_M = 1.2$
Antisymmetric RNN	97.1%	96.6%	91.6%	77.0%	96.6%	94.6%	91.2%
CoRNN	97.5%	96.8%	92.9%	87.2%	93.9%	85.4%	78.4%
Exponential RNN	97.4%	95.6%	86.4%	76.7%	95.7%	89.4%	81.3%
Lipschitz RNN	97.7 %	97.4%	95.1%	88.9%	97.6%	97.0%	95.6%
Noisy RNN (mult./add. noise: 0.03/0.06)	97.7%	97.5 %	96.3%	92.6%	97.7 %	97.3%	96.5 %

Regularization Induced by Noise Injection

Theorem 2: Implicit regularization induced by noise injection

Under mild assumption on f and σ ,

$$\mathbb{E}\ell(h_M^{\delta}) = \ell(\bar{h}_M^{\delta}) + \frac{\epsilon^2}{2} [\hat{Q}(\bar{h}^{\delta}) + \hat{R}(\bar{h}^{\delta})] + \mathcal{O}(\epsilon^3),$$
(16)

as $\epsilon \to 0,$ where the terms \hat{Q} and \hat{R} are given by

$$\hat{Q}(\bar{h}^{\delta}) = \nabla l(\bar{h}_{M}^{\delta})^{T} \sum_{k=1}^{M} \delta_{k-1} \hat{\Phi}_{M-1,k} \sum_{m=1}^{M-1} \delta_{m-1} \operatorname{vec} v_{m},$$
(17)

$$\hat{R}(\bar{h}^{\delta}) = \sum_{m=1}^{M} \delta_{m-1} tr(\sigma_{m-1}^{T} \hat{\Phi}_{M-1,m}^{T} H_{\bar{h}^{\delta}} l \ \hat{\Phi}_{M-1,m} \sigma_{m-1}),$$
(18)

with $\operatorname{vec} v_m$ a vector with the *p*th component $(p = 1, \ldots, d_h)$:

$$[v_m]^p = tr(\sigma_{m-1}^T \hat{\Phi}_{M-2,m}^T H_{\bar{h}\delta}[f_M]^p \hat{\Phi}_{M-2,m} \sigma_{m-1}).$$
⁽¹⁹⁾

Moreover,

$$|\hat{Q}(\bar{h}^{\delta})| \le C_Q \Delta^2, \quad |\hat{R}(\bar{h}^{\delta})| \le C_R \Delta,$$
(20)

for $C_Q, C_R > 0$ independent of Δ .

Outline

Introduction

From Multi-Resolution to Long Expressive Memory Units

► A simple example of a system of *two-scale ODEs* is given by

$$\frac{d\boldsymbol{y}}{dt} = \tau_y \left(\sigma \left(\mathbf{W}_y \boldsymbol{z} + \mathbf{V}_y \mathbf{x} + \mathbf{b}_y \right) - \boldsymbol{y} \right), \quad \frac{d\boldsymbol{z}}{dt} = \tau_z \left(\sigma \left(\mathbf{W}_z \boldsymbol{y} + \mathbf{V}_z \mathbf{x} + \mathbf{b}_z \right) - \boldsymbol{z} \right).$$
(21)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Here τ_y and τ_z are the two time scales,

▶ $y(t) \in \mathbb{R}^{d_y}$, and $z(t) \in \mathbb{R}^{d_z}$ are the vectors of *slow* and *fast* variables.

From Multi-Resolution to Long Expressive Memory Units

► A simple example of a system of *two-scale ODEs* is given by

$$\frac{d\boldsymbol{y}}{dt} = \tau_y \left(\sigma \left(\mathbf{W}_y \boldsymbol{z} + \mathbf{V}_y \mathbf{x} + \mathbf{b}_y \right) - \boldsymbol{y} \right), \quad \frac{d\boldsymbol{z}}{dt} = \tau_z \left(\sigma \left(\mathbf{W}_z \boldsymbol{y} + \mathbf{V}_z \mathbf{x} + \mathbf{b}_z \right) - \boldsymbol{z} \right).$$
(21)

• Here τ_y and τ_z are the two time scales,

▶ $y(t) \in \mathbb{R}^{d_y}$, and $z(t) \in \mathbb{R}^{d_z}$ are the vectors of *slow* and *fast* variables.

Two scales (one fast and one slow) are not enough for for complicate problems, in practice.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

From Multi-Resolution to Long Expressive Memory Units

► A simple example of a system of *two-scale ODEs* is given by

$$\frac{d\boldsymbol{y}}{dt} = \tau_y \left(\sigma \left(\mathbf{W}_y \boldsymbol{z} + \mathbf{V}_y \mathbf{x} + \mathbf{b}_y \right) - \boldsymbol{y} \right), \quad \frac{d\boldsymbol{z}}{dt} = \tau_z \left(\sigma \left(\mathbf{W}_z \boldsymbol{y} + \mathbf{V}_z \mathbf{x} + \mathbf{b}_z \right) - \boldsymbol{z} \right).$$
(21)

- Here τ_y and τ_z are the two time scales,
 y(t) ∈ ℝ^{d_y}, and z(t) ∈ ℝ^{d_z} are the vectors of *slow* and *fast* variables.
- Two scales (one fast and one slow) are not enough for for complicate problems, in practice.
- We can generalize this idea to a multiscale version, provided by the following set of ODEs,

$$\frac{d\boldsymbol{y}}{dt} = \hat{\sigma} \left(\mathbf{W}_2 \boldsymbol{y} + \mathbf{V}_2 \mathbf{u} + \mathbf{b}_2 \right) \odot \left(\sigma \left(\mathbf{W}_y \boldsymbol{z} + \mathbf{V}_y \mathbf{u} + \mathbf{b}_y \right) - \boldsymbol{y} \right),$$

$$\frac{d\boldsymbol{z}}{dt} = \hat{\sigma} \left(\mathbf{W}_1 \boldsymbol{y} + \mathbf{V}_1 \mathbf{u} + \mathbf{b}_1 \right) \odot \left(\sigma \left(\mathbf{W}_z \boldsymbol{y} + \mathbf{V}_z \mathbf{u} + \mathbf{b}_z \right) - \boldsymbol{z} \right).$$
(22)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Training Long Expressive Memory Units

We discretize the system of ODEs with using an implicit-explicit time-stepping scheme

$$\begin{aligned} \Delta \mathbf{t}_n &= \Delta t \hat{\sigma} (\mathbf{W}_1 \mathbf{y}_{n-1} + \mathbf{V}_1 \mathbf{u}_n + \mathbf{b}_1), \\ \overline{\Delta t}_n &= \Delta t \hat{\sigma} (\mathbf{W}_2 \mathbf{y}_{n-1} + \mathbf{V}_2 \mathbf{u}_n + \mathbf{b}_2), \\ \mathbf{z}_n &= (1 - \Delta \mathbf{t}_n) \odot \mathbf{z}_{n-1} + \Delta \mathbf{t}_n \odot \sigma (\mathbf{W}_z \mathbf{y}_{n-1} + \mathbf{V}_z \mathbf{u}_n + \mathbf{b}_z), \\ \mathbf{y}_n &= (1 - \overline{\Delta t}_n) \odot \mathbf{y}_{n-1} + \overline{\Delta t}_n \odot \sigma (\mathbf{W}_y \mathbf{z}_n + \mathbf{V}_y \mathbf{u}_n + \mathbf{b}_y). \end{aligned}$$
(23)

- The particular model mitigates the exploding and vanishing gradients problem.
- We can show that this model is a universal approximation of general dynamical systems,
- and also a universal approximation of multiscale dynamical systems.

Results

Model	test accuracy	# units	# params
tanh-RNN	73.4%	128	27k
LSTM	94.9%	128	107k
GRU	95.2%	128	80k
expRNN	92.3%	128	19k
coRNN	94.7%	128	44k
LEM	95.7%	128	107k

Table 3: Test accuracies on Google12 (benchmark for speech recognition).

Table 4: Test L^2 error on heart-rate prediction.

Model	test L^2 error	# units	# params
LSTM	9.93	128	67k
expRNN	1.63	256	34k
coRNN	1.61	128	34k
UnICORNN (3 layers)	1.31	128	34k
LEM	0.85	128	67k

Outline

Introduction

A Naive Deep Learning Approach for Sequence Modeling

▶ Train a neural network $\mathcal{F} : \mathbb{R}^m \to \mathbb{R}^m$ that learns the following map

 $\mathbf{\hat{x}}_{t+1} = \mathcal{F}(\mathbf{x}_t), \quad t = 0, 1, 2, \dots, T.$

During inference time, we can obtain predictions by composing the model k-times

$$\mathbf{\hat{x}}_{t+k} = \mathcal{F} \circ \mathcal{F} \circ \mathcal{F} \circ \dots \circ \mathcal{F}(\mathbf{x}_t).$$

This approach typically fails to provide accurate predictions over long time horizons.

Further, \mathcal{F} is difficult to analyze and ignores any prior knowledge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Dynamic Autoencoders

- ▶ The general idea is to design a model that consists of three components.
 - Non-linear encoder Ψ : embeds inputs in a low-dimensional latent space.
 - A linear forward map Ω : evolves latent variables in time.
 - Non-linear decoder Φ : lifts latent variables back in high-dimensional space.

Dynamic Autoencoders

- ▶ The general idea is to design a model that consists of three components.
 - Non-linear encoder Ψ : embeds inputs in a low-dimensional latent space.
 - A linear forward map Ω : evolves latent variables in time.
 - Non-linear decoder Φ : lifts latent variables back in high-dimensional space.

▶ We train the DAE by balancing between the forward prediction loss and reconstruction loss

$$\min \frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\|\mathbf{x}_{t+k} - \boldsymbol{\Phi} \circ \boldsymbol{\Omega}_k \circ \cdots \circ \boldsymbol{\Omega}_1 \circ \boldsymbol{\Psi}(\mathbf{x}_t)\|_2^2}_{\text{prediction loss}} + \lambda \underbrace{\|\mathbf{x}_t - \boldsymbol{\Phi} \circ \boldsymbol{\Psi}(\mathbf{x}_t)\|_2^2}_{\text{reconstruction loss}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Dynamic Autoencoders Learn Coordinate Transformations

The key observation is that we can learn a coordinate transformation so that the latent variables $\mathbf{q}_t = \mathbf{\Psi}(\mathbf{x}_k)$ can be evolved in time by a linear map

$$\mathbf{\hat{q}}_{t+k} = \mathbf{\Omega}^k \mathbf{q}_t$$

Motivated by Applied Koopmanism

Koopman analysis provides a framework to study nonlinear dynamical system that is based on a coordinate transformation which embeds a nonlinear system in a space where the temporal evolution can be described by a linear operator.

 \triangleright \mathcal{K} is a linear operator that evolves the observables $g(\mathbf{x}_n)$ in time.

Motivated by Applied Koopmanism

Koopman analysis provides a framework to study nonlinear dynamical system that is based on a coordinate transformation which embeds a nonlinear system in a space where the temporal evolution can be described by a linear operator.

 \triangleright \mathcal{K} is a linear operator that evolves the observables $g(\mathbf{x}_n)$ in time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Motivated by Applied Koopmanism

Koopman analysis provides a framework to study nonlinear dynamical system that is based on a coordinate transformation which embeds a nonlinear system in a space where the temporal evolution can be described by a linear operator.

 \triangleright \mathcal{K} is a linear operator that evolves the observables $g(\mathbf{x}_n)$ in time.

Consistent Dynamic Autoencoders (ICML 2020)³

 \blacktriangleright We can learn a model that learns both a forward map Ω and backward map $\Omega'.$

³Forecasting Sequential Data Using Consistent Koopman Autoencoders (ICML, 2020).

Consistent Dynamic Autoencoders (ICML 2020)³

 \blacktriangleright We can learn a model that learns both a forward map Ω and backward map Ω' .

> Then we can promote consistency by considering the following loss term

$$\rho_{\rm c} = \sum_{k=1}^{\kappa} \frac{1}{2k} \| \mathbf{\Omega}_{k*} \mathbf{\Omega}'_{*k} - \mathbf{I}_k \|_F^2 + \frac{1}{2k} \| \mathbf{\Omega}'_{*k} \mathbf{\Omega}_{k*} - \mathbf{I}_k \|_F^2 , \qquad (24)$$

where Ω'_{k*} and Ω_{*k} are the upper k rows of Ω' and leftmost k columns of the matrix Ω .

³Forecasting Sequential Data Using Consistent Koopman Autoencoders (ICML, 2020).

Consistency Stabilizes Weights

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

High-dimensional Nonlinear Pendulum with no Friction

Prediction errors, over a time horizon of 1000 steps, for clean and noisy observations from a pendulum with initial conditions $\theta_0 = 0.8$ (top row) and $\theta_0 = 2.4$ (bottom row).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

High-dimensional Fluid Flow Past a Cylinder

Outline

Introduction

Summary

- A richer understanding between DS and DL enables us to design more robust models.
- Noise injection can be viewed as a stochastic learning strategy used to improve robustness of the learning model against data perturbations
- Our empirical results show that CT RNNs achieve superior robustness to input perturbations, while maintaining state-of-the-art generalization performance

The dynamical systems perspective can help us to better understand black-box ML methods as well as to help us to design more robust models.