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Introduction
I Many interesting problems exhibit multi-scale and non-linear temporal structures, for

instance, turbulent fluid flows, climate and vision.

I Neural networks provide a flexible and powerful framework for sequential data modeling.

I The aim is to map a sequence x0, . . . ,xN ∈ Rm to a target sequence y0, . . . ,yK ∈ Rd.

observed unobserved



But, Neural Networks are Brittle and Prone to Fail



For Example, Adversarial Examples

clean example adversarial perturbation adversarial example

“king penguin” “panda”

62.8% confidence 89.7% confidence

I Szegedy et al. ”Intriguing properties of neural networks.” ICLR (2014).

I Goodfellow et al. ”Explaining and harnessing adversarial examples.” ICLR (2015).



Leveraging Ideas from Dynamical Systems

I Viewing DNNs from a dynamical systems and control theoretic point of view provides us
with powerful tools to study the stability and long-term behavior of neural networks.

Machine Learning Dynamical Systems

What can we learn from dynamical systems and control theory?

Network Architecture Design Numerical Methods

Training Stability and Control

ML applied to scientific 
appications (SciML)

I Hope: The dynamical system perspective can help us to better understand black-box ML
methods as well as to help us to design more robust models.



Connection between Deep Learning and Differential Equations
I The essential building blocks of ResNets are so-called residual units.

xt+1 = xt +Rt(xt; θt). (1)

I The function Rt : Rn → Rn denotes the t-th residual module (a non-linear map),
parameterized by θt, which takes a signal xt ∈ Rn as input and returns xt+1 ∈ Rn.

Rt(xt; θt) Rt+1(xt+1; θt+1)

residual
unit

residual
unitxt xt+1 xt+2

I Now, consider an ODE that takes the form:

dx(t)

dt
= R(x(t); θt). (2)

I The form of forward Euler draws a connection between ODEs and residual units

xt+1 = xt + ∆t R(xt; θt)). (3)
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Connection between Architecture Design and Numerical Methods
I Algebraically, a residual unit also closely resembles many time-stepping schemes

xt+1 ≈ xt + ∆t · scheme [R, xt, ∆t] ,

where scheme represents one step of a numerical integration scheme.

I This connection between numerical methods and neural networks has provided inspiration
for the design of many new network architectures: PolyNet, FractalNet, RevNet, etc.



Numerical Integration and ML Work in Opposite Directions
I When a numerical integrator is used in scientific computing, we start with a differential

equation, and we formulate a discrete model which can produce discrete data.

I Learning a model using a data-driven approach, however, works in the opposite direction,
i.e., we fit a discrete model to a collection of discrete data points.

Numerical Integration Learning the Dynamics

Ground Truth 
Dynamics

Approximation yield
data

Use data to learn
a modell

Now, what is R?

Observed
Data

Inferred
Time Series



Example: Nonlinear Pendulum1

I It is ‘misleading’ to interpret an ODE-Net(Euler) model as a forward Euler discretization
of the differential equation, despite having a similar algebraic form.

I That is, the analogy of a ResNet to forward Euler is superficial and at best incomplete.

I In contrast, ODE-Net(Midpoint) and ODE-Net(RK4) can meaningfully be interpreted as a
discrete approximation to a continuous dynamical system.
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1Continuous-in-Depth Neural Networks (arXiv:2008.02389)



Stability of Linear Neural Networks

I We might be interested to study whether latent trajectories of a neural networks under
small perturbations of the initial condition (input) x0, are stable.

I This is easy to check for simple linear neural networks.

I A linear neural network A : Rk → Rk that maps xt to xt+1 given by

xt+1 = A(xt) t = 0, 1, 2, . . .

is stable if all trajectories that starting arbitrarily close to the origin (in a ball of radius δ)
remain arbitrarily close (in a ball of radius ε).

δ ε t
x0



Vanishing and Exploding Gradients Problem

I Training gradient-based sequential models is difficult.

I Consider the following linear DT dynamical system ht+1 = Aht, then it follows

xt+s = Asxt = (As ◦ · · · ◦A1)(xt) (4)

I Depending on the eigenvalues of A, there are three situations that can occur
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Basic Recurrent Unit

state nonlinearity

hidden-to-hidden 
matrix

input-to-hidden matrix

input

bias

I Recurrent units are networks with feedback connections.

I RNNs can use their hidden state (memory) to process variable length sequences of inputs.

I Challenge: RNNs are known to have stability issues and are difficult to train, most
notably due to the vanishing and exploding gradients problem.



Lipschitz Recurrent Neural Network (ICLR 2021)2

I We can view RNNs as dynamical systems whose temporal evolutions are governed by an
abstract system of differential equations with an external input:{

ḣ(t) = σ(Wh+ Ux+ b),

y = Dh.

(5)

(6)

I We propose a continuous-time recurrent unit that describes the hidden state’s evolution
with two parts: a well-understood linear component plus a Lipschitz nonlinearity.

ḣ = Ah+ σ(Wh+ Ux+ b)

We assume that the nonlinearity σ is an M -Lipschitz function.

2Lipschitz Recurrent Neural Networks (ICLR 2021).
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Stability Analysis of Lipschitz Recurrent Units

I Assuming that σ is an M -Lipschitz function, we prove that our model is globally
exponentially stable under some mild conditions on A and W .

Theorem 1

Let h∗ be an equilibrium point of a DE of the form ḣ = Ah+ σ(Wh+Ux+ b) for
some x ∈ Rp. The point h∗ is globally exponentially stable if

I the eigenvalues of Asym := 1
2
(A+AT ) are strictly negative,

I W is non-singular,

I and σmin(A
sym) > Mσmax(W ).

I The proof relies on the classical Kalman-Yakubovich-Popov lemma and circle criterion.

I Intuitively, global exponential stability is guaranteed if the matrix A has eigenvalues with
real parts sufficiently negative to counteract expanding trajectories in the nonlinearity.



Symmetric-Skew Hidden-to-Hidden Matrices

I We propose the following symmetric-skew decomposition for constructing hidden matrices:

Sβ,γ := (1− β) · (M +MT ) + β · (M −MT )− γI. (7)

I Using this construction, we can easily bound the spectrum via the parameters β and γ.

Proposition 1

Let Sβ,γ satisfy (7), and let M sym = 1
2 (M +MT ). The real parts <λi(Sβ,γ) of the

eigenvalues of Sβ,γ lie in the interval

[(1− β)λmin(M sym)− γ, (1− β)λmax(M sym)− γ].



Illustration of the Symmetric-Skew Decomposition

I Our symmetric-skew scheme allows us to construct hidden-to-hidden matrices that exhibit
dynamics with moderate decay and growth behavior.

I This helps to mitigate the problem of exploding and vanishing gradients.

2 1 0
Real

1

0

1

Im
ag

in
ar

y

Eigenvalues

(a) β = 0.5, γ = 0

2 1 0
Real

1

0

1

Im
ag

in
ar

y

Eigenvalues

(b) β = 0.75, γ = 0.00

2 1 0
Real

1

0

1

Im
ag

in
ar

y

Eigenvalues

(c) β = 0.75, γ = 0.1



Putting it All Together

I Our Lipschitz recurrent neural network takes the functional form:{
ḣ = AβA,γAh+ tanh(WβW ,γW h+ Ux+ b) ,

y = Dh ,

(8a)

(8b)

I The hidden-to-hidden matrices Aβ,γ ∈ RN×N and Wβ,γ ∈ RN×N are of the form{
AβA,γA = (1− βA)(MA +MT

A ) + βA(MA −MT
A )− γAI

WβW ,γW = (1− βW )(MW +MT
W ) + βW (MW −MT

W )− γW I,
(9a)

(9b)

where βA, βW ∈ [0, 1], γA, γW > 0 are parameters and MA,MW ∈ RN×N are matrices.



Training Continuous-time Recurrent Units

I Letting f(h, t) = Ah+ tanh(Wh+ Ux(t) + b) so that ḣ(t) = f(h, t), the approximate
solutions for ht+1 given ht are given by

ht+1 ≈ ht + ∆t · scheme [f, ht, ∆t] ,

where scheme represents one step of a numerical integration scheme.



Empirical Evaluation



Robustness with Respect to Input Perturbations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.4

0.6

0.8

1.0

Lipschitz RNN

Antisymmetric RNN

coRNN

expRNN

te
st

ac
cu

ra
cy

amount of noise



Outline

Introduction

Continuous-time RNNs

Dynamic Autoencoders

- Lipschitz RNNs
- Noisy RNNs
- LEMs

Summary



From Good Old RNNs to SDEs: An Illustration

I Two steps:

(1) Adding leaky integrator (“damping” term):

ht+1 = αht + βf(ht, xt) (10)

(2) Injecting noise (various motivations and benefits):

ht+1 = αht + βf(ht, xt) + θξt, α, β, θ > 0, (11)

where the ξt are i.i.d. random vectors (e.g., zero mean Gaussian)

I Setting α = 1− γ∆t, β = ∆t, θ =
√

∆tσ and ξt = i.i.d. standard Gaussian, we get
Euler-Mayurama approximation of the stochastic differential equation:

dht = −γhtdt+ f(ht, xt)dt+ σdBt, t ∈ [0, T ], (12)

where (Bt)t≥0 is a Brownian motion.
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Noisy Recurrent Neural Networks (NeurIPS 2021)

Let x be an input signal, we consider the following (Itô) SDE model

dht = f(ht, xt) d t+ σ(ht, xt) dBt, yt = V ht, (13)

where (Bt)t≥0 is an r-dimensional Brownian motion.

I The functions f and σ are referred to as the drift and diffusion coefficients, respectively.

I

f(h, x) = Ah+ a(Wh+ Ux+ b), (14)

where a : R→ R is a Lipschitz continuous scalar activation function.

I

σ(h, x) = ε(σ1I + σ2diag(f(h, x))), (15)

where the noise level ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters

I Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of the learning model against data perturbations.
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Robustness with Respect to Input Perturbations

Table 1: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN 97.5% 45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN 99.1% 96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN 96.7% 86.7% 58.1% 33.3% 83.6% 70.7% 43.4%
Lipschitz RNN 99.2% 98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
Noisy RNN (mult./add. noise: 0.02/0.05) 99.1% 98.9% 92.2% 73.5% 98.5% 97.1% 85.5%
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Electrocardiogram (ECG) Classification
I The Electrocardiogram (ECG) classification task aims to discriminate between normal and

abnormal heart beats of a patient that has severe congestive heart failure.

I We use 500 sequences of length 140 for training, and 4, 000 sequences for testing.



Results for Electrocardiogram (ECG) Classification

Table 2: Robustness w.r.t. white (σ) and multiplicative (σM ) noise perturbations on the ECG task.

Name clean σ = 0.4 σ = 0.8 σ = 1.2 σM = 0.4 σM = 0.8 σM = 1.2

Antisymmetric RNN 97.1% 96.6% 91.6% 77.0% 96.6% 94.6% 91.2%
CoRNN 97.5% 96.8% 92.9% 87.2% 93.9% 85.4% 78.4%
Exponential RNN 97.4% 95.6% 86.4% 76.7% 95.7% 89.4% 81.3%
Lipschitz RNN 97.7% 97.4% 95.1% 88.9% 97.6% 97.0% 95.6%
Noisy RNN (mult./add. noise: 0.03/0.06) 97.7% 97.5% 96.3% 92.6% 97.7% 97.3% 96.5%
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Regularization Induced by Noise Injection
Theorem 2: Implicit regularization induced by noise injection

Under mild assumption on f and σ,

E`(hδM ) = `(h̄δM ) +
ε2

2
[Q̂(h̄δ) + R̂(h̄δ)] +O(ε3), (16)

as ε→ 0, where the terms Q̂ and R̂ are given by

Q̂(h̄δ) = ∇l(h̄δM )T
M∑
k=1

δk−1Φ̂M−1,k

M−1∑
m=1

δm−1 vec vm, (17)

R̂(h̄δ) =
M∑
m=1

δm−1tr(σ
T
m−1Φ̂TM−1,mHh̄δ l Φ̂M−1,mσm−1), (18)

with vec vm a vector with the pth component (p = 1, . . . , dh):

[vm]p = tr(σTm−1Φ̂TM−2,mHh̄δ [fM ]pΦ̂M−2,mσm−1). (19)

Moreover,
|Q̂(h̄δ)| ≤ CQ∆2, |R̂(h̄δ)| ≤ CR∆, (20)

for CQ, CR > 0 independent of ∆.
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From Multi-Resolution to Long Expressive Memory Units

I A simple example of a system of two-scale ODEs is given by

dy

dt
= τy (σ (Wyz + Vyx + by)− y) ,

dz

dt
= τz (σ (Wzy + Vzx + bz)− z) . (21)

I Here τy and τz are the two time scales,

I y(t) ∈ Rdy , and z(t) ∈ Rdz are the vectors of slow and fast variables.

I Two scales (one fast and one slow) are not enough for for complicate problems, in practice.

I We can generalize this idea to a multiscale version, provided by the following set of ODEs,

dy

dt
= σ̂ (W2y + V2u + b2)� (σ (Wyz + Vyu + by)− y) ,

dz

dt
= σ̂ (W1y + V1u + b1)� (σ (Wzy + Vzu + bz)− z) .

(22)
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Training Long Expressive Memory Units

I We discretize the system of ODEs with using an implicit-explicit time-stepping scheme

∆tn = ∆tσ̂(W1yn−1 + V1un + b1),

∆tn = ∆tσ̂(W2yn−1 + V2un + b2),

zn = (1−∆tn)� zn−1 + ∆tn � σ(Wzyn−1 + Vzun + bz),

yn = (1−∆tn)� yn−1 + ∆tn � σ(Wyzn + Vyun + by).

(23)

I The particular model mitigates the exploding and vanishing gradients problem.

I We can show that this model is a universal approximation of general dynamical systems,

I and also a universal approximation of multiscale dynamical systems.



Results

Table 3: Test accuracies on Google12 (benchmark for speech recognition).

Model test accuracy # units # params

tanh-RNN 73.4% 128 27k
LSTM 94.9% 128 107k
GRU 95.2% 128 80k
expRNN 92.3% 128 19k
coRNN 94.7% 128 44k
LEM 95.7% 128 107k

Table 4: Test L2 error on heart-rate prediction.

Model test L2 error # units # params

LSTM 9.93 128 67k
expRNN 1.63 256 34k
coRNN 1.61 128 34k
UnICORNN (3 layers) 1.31 128 34k
LEM 0.85 128 67k
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A Naive Deep Learning Approach for Sequence Modeling
I Train a neural network F : Rm → Rm that learns the following map

x̂t+1 = F(xt), t = 0, 1, 2, . . . , T.

I During inference time, we can obtain predictions by composing the model k-times

x̂t+k = F ◦ F ◦ F ◦ ... ◦ F(xt).

I This approach typically fails to provide accurate predictions over long time horizons.

I Further, F is difficult to analyze and ignores any prior knowledge.

Black Box



Dynamic Autoencoders

I The general idea is to design a model that consists of three components.
I Non-linear encoder Ψ: embeds inputs in a low-dimensional latent space.
I A linear forward map Ω: evolves latent variables in time.
I Non-linear decoder Φ: lifts latent variables back in high-dimensional space.

encoder dynamics decoder

I We train the DAE by balancing between the forward prediction loss and reconstruction loss

min
1

T

T−1∑
t=0

‖xt+k −Φ ◦Ωk ◦ · · · ◦Ω1 ◦Ψ(xt)‖22︸ ︷︷ ︸
prediction loss

+ λ‖xt −Φ ◦Ψ(xt)‖22︸ ︷︷ ︸
reconstruction loss

.
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Dynamic Autoencoders Learn Coordinate Transformations

I The key observation is that we can learn a coordinate transformation so that the latent
variables qt = Ψ(xk) can be evolved in time by a linear map

q̂t+k = Ωkqt.

Nonlinear Trajectory in
High Dimensional Space

Encode

Decode

New Space with 
Linearized Trajectory

Nonlinear
Mappings



Motivated by Applied Koopmanism

I Koopman analysis provides a framework to study nonlinear dynamical system that is based
on a coordinate transformation which embeds a nonlinear system in a space where the
temporal evolution can be described by a linear operator.

xn+1 = A(xn)︸ ︷︷ ︸
nonlinear

→ zn := g(xn)︸ ︷︷ ︸
coordinate transform

→ zn+1 = K zn︸ ︷︷ ︸
linear

I K is a linear operator that evolves the observables g(xn) in time.
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Consistent Dynamic Autoencoders (ICML 2020) 3

I We can learn a model that learns both a forward map Ω and backward map Ω′.

encoder dynamics decoder

I Then we can promote consistency by considering the following loss term

ρc =
κ∑
k=1

1

2k
‖Ωk∗Ω

′
∗k − Ik‖2F +

1

2k
‖Ω′∗kΩk∗ − Ik‖2F , (24)

where Ω′k∗ and Ω∗k are the upper k rows of Ω′ and leftmost k columns of the matrix Ω.
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Consistency Stabilizes Weights
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High-dimensional Nonlinear Pendulum with no Friction
Prediction errors, over a time horizon of 1000 steps, for clean and noisy observations from a
pendulum with initial conditions θ0 = 0.8 (top row) and θ0 = 2.4 (bottom row).
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High-dimensional Fluid Flow Past a Cylinder
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Outline

Introduction

Continuous-time RNNs

Dynamic Autoencoders

- Lipschitz RNNs
- Noisy RNNs
- LEMs

Summary



Summary

I A richer understanding between DS and DL enables us to design more robust models.

I Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of the learning model against data perturbations

I Our empirical results show that CT RNNs achieve superior robustness to input
perturbations, while maintaining state-of-the-art generalization performance


