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Introduction

» Many interesting problems exhibit multi-scale and non-linear temporal structures, for
instance, turbulent fluid flows, climate and vision.

» Neural networks provide a flexible and powerful framework for sequential data modeling.

» The aim is to map a sequence Xo,...,Xy € R™ to a target sequence yo,...,yx € R%.
to t1 tN tN41 ta

observed unobserved



But, Neural Networks are Brittle and Prone to Fail




For Example, Adversarial Examples

clean example adversarial perturbation adversarial example

“king penguin” “panda”
62.8% confidence 89.7% confidence

> Szegedy et al. "Intriguing properties of neural networks.” ICLR (2014).
» Goodfellow et al. "Explaining and harnessing adversarial examples.” ICLR (2015).



Leveraging Ideas from Dynamical Systems

» Viewing DNNs from a dynamical systems and control theoretic point of view provides us
with powerful tools to study the stability and long-term behavior of neural networks.

ML applied to scientific
appications (SciML) Dynamical Systems
[y— +€] [yI ty,x)j

Machine Learning

What can we learn from dynamical systems and control theory?
[Network Architecture Design} > [ Numerical Methods }
[ Training } > { Stability and Control }

» Hope: The dynamical system perspective can help us to better understand black-box ML
methods as well as to help us to design more robust models.



Connection between Deep Learning and Differential Equations

» The essential building blocks of ResNets are so-called residual units.
Tip1 = o+ Re(24;0;).

» The function R; : R™ — R"™ denotes the ¢-th residual module (a non-linear map),

parameterized by 6,, which takes a signal x; € R™ as input and returns z;11 € R".

residual a residual e
. . —
unit unit
Tt Ti41 Tt42

Rt(l"t; 9t) Rt+1(1't+1; 9t+1)

(1)



Connection between Deep Learning and Differential Equations

» The essential building blocks of ResNets are so-called residual units.
Tip1 = o+ Re(24;0;).

» The function R; : R™ — R™ denotes the ¢-th residual module (a non-linear map),

parameterized by 6,, which takes a signal x; € R™ as input and returns z;11 € R".

T unit Tt unit
Rt($t; 9t) Rt+1(1't+1; 9t+1)
» Now, consider an ODE that takes the form:

H—

Tt42

dx(t)

~ = Ra(t):0r).

» The form of forward Euler draws a connection between ODEs and residual units

Ti41 = Tt + At R(l’t, 6t))

(1)



Connection between Architecture Design and Numerical Methods

» Algebraically, a residual unit also closely resembles many time-stepping schemes
Ti11 = oy + At - scheme [R, ¢, At],

where scheme represents one step of a numerical integration scheme.

¥ At

ixH»l

ResNet / Euler Midpoint RK4-Classic RK4-3/8

» This connection between numerical methods and neural networks has provided inspiration
for the design of many new network architectures: PolyNet, FractalNet, RevNet, etc.



Numerical Integration and ML Work in Opposite Directions

» When a numerical integrator is used in scientific computing, we start with a differential
equation, and we formulate a discrete model which can produce discrete data.

» Learning a model using a data-driven approach, however, works in the opposite direction,
i.e., we fit a discrete model to a collection of discrete data points.

Numerical Integration Learning the Dynamics
da
R R(1:0)
Ground Truth Now, what is R?
Dynamics
‘ st = 30 + Atf(z) ’ min s — (20 + A R(xe:0))]
. . . Use data to learn
Approximation yield
data a modell
Inferred Observed
x‘./,/»\ Time Series x Pad ""“1_ Data
Nt - t

‘ o ’ ' =



Example: Nonlinear Pendulum!
» It is ‘misleading’ to interpret an ODE-Net(Euler) model as a forward Euler discretization
of the differential equation, despite having a similar algebraic form.
» That is, the analogy of a ResNet to forward Euler is superficial and at best incomplete.

» In contrast, ODE-Net(Midpoint) and ODE-Net(RK4) can meaningfully be interpreted as a
discrete approximation to a continuous dynamical system.

-m- Ground Truth ~~ODE-Net(Euler) ! 4 Euler
1 —»—Numerical Euler ~-ODE-Net(Midpoifit) gorwe"

—4— ODE-Net(Euler) 10°] —~ODE-Net(RK4) |
41 —e— ODE-Net(RK4) :

3 27 . 107
[
0 - i

104

_2 4
. . . . . ; 106
0 2 4 6 8 10 107 10° 10t
Time Inference At

1Continuous-in-Depth Neural Networks (arXiv:2008.02389)



Stability of Linear Neural Networks

> We might be interested to study whether latent trajectories of a neural networks under
small perturbations of the initial condition (input) ¢, are stable.

» This is easy to check for simple linear neural networks.

» A linear neural network A : R* — R” that maps x; to x;, 1 given by
Xi41 = A(Xt) t= 071,2,...

is stable if all trajectories that starting arbitrarily close to the origin (in a ball of radius 0)
remain arbitrarily close (in a ball of radius €).

"o N

o




Vanishing and Exploding Gradients Problem

» Training gradient-based sequential models is difficult.

» Consider the following linear DT dynamical system h;11 = Ahy, then it follows

Tiys = A’y = (As 00 Ay)(my) (4)

» Depending on the eigenvalues of A, there are three situations that can occur

/
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Basic Recurrent Unit

state nonlinearity input

|

ht+1 = O'(Wht + UCIZ’t + b)

|

hidden-to-hidden bias
matrix

input-to-hidden matrix

» Recurrent units are networks with feedback connections.
» RNNSs can use their hidden state (memory) to process variable length sequences of inputs.

» Challenge: RNNs are known to have stability issues and are difficult to train, most
notably due to the vanishing and exploding gradients problem.



Lipschitz Recurrent Neural Network (ICLR 2021)?

» We can view RNNs as dynamical systems whose temporal evolutions are governed by an
abstract system of differential equations with an external input:

h(t) oc(Wh+Uz +1b), (5)
y = Dh. (6)

2Lipschitz Recurrent Neural Networks (ICLR 2021).



Lipschitz Recurrent Neural Network (ICLR 2021)?

» We can view RNNs as dynamical systems whose temporal evolutions are governed by an
abstract system of differential equations with an external input:

h(t) oc(Wh+Uz +1b), (5)
y = Dh (6)

» We propose a continuous-time recurrent unit that describes the hidden state’s evolution
with two parts: a well-understood linear component plus a Lipschitz nonlinearity.

h = Ah+o(Wh+Uz+b)

We assume that the nonlinearity o is an M-Lipschitz function.

2Lipschitz Recurrent Neural Networks (ICLR 2021).



Stability Analysis of Lipschitz Recurrent Units

» Assuming that o is an M-Lipschitz function, we prove that our model is globally
exponentially stable under some mild conditions on A and W.

Let h* be an equilibrium point of a DE of the form h = Ah+ o(Wh + Uz + b) for
some x € RP. The point h* is globally exponentially stable if

> the eigenvalues of A™™ = 1(A+ AT) are strictly negative,
» W is non-singular,
» and Omin (A™™) > Momax(W).

» The proof relies on the classical Kalman-Yakubovich-Popov lemma and circle criterion.

> Intuitively, global exponential stability is guaranteed if the matrix A has eigenvalues with
real parts sufficiently negative to counteract expanding trajectories in the nonlinearity.



Symmetric-Skew Hidden-to-Hidden Matrices

» We propose the following symmetric-skew decomposition for constructing hidden matrices:
Sgri=(1=B)- (M+M")+5-(M—M")—~I. (7)

» Using this construction, we can easily bound the spectrum via the parameters 8 and 7.

Proposition 1

Let S, satisfy (7), and let M*™ = £ (M + M7T). The real parts R\;(S3,,) of the
eigenvalues of Sg ., lie in the interval

[(1 - B))\min(Msym) -7 (1 - B)Amax(Msym) - ’Y]




lllustration of the Symmetric-Skew Decomposition

» Our symmetric-skew scheme allows us to construct hidden-to-hidden matrices that exhibit
dynamics with moderate decay and growth behavior.

» This helps to mitigate the problem of exploding and vanishing gradients.

B Eigenvalues

W Eigenvalues B Eigenvalues

-

Imaginary
Imaginary
o
1
1
|
|
Imaginary
o

1

1

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
0 0

Real Real

(b) 8= 0.75, v = 0.00 (c) B=0.75y=0.1




Putting it All Together

» Our Lipschitz recurrent neural network takes the functional form:

h = Ag,,h+tanh(Ws,, o h+ Uz +b) , (8a)
y = Dh, (8b)

» The hidden-to-hidden matrices Ag ., € RV*N and W5, € RV*N are of the form

{ Apys = (1= Ba)(Ma+ ME) + Ba(Ma — MY) — yal (9a)
W aw = (1= Bw)(Mw + M) + Bw (Mw — M) — ywl, (9b)

where B4, Bw € [0,1], v4,vw > 0 are parameters and M, My, € RV*Y are matrices.



Training Continuous-time Recurrent Units

> Letting f(h,t) = Ah + tanh(Wh + Uz(t) + b) so that i(t) = f(h,t), the approximate
solutions for hy;1 given h, are given by

hiy1 &~ hy + At - scheme [f, hy, At]

where scheme represents one step of a numerical integration scheme.

(
I
I
I
I
I
\

,—{ hy

v

Rty
Euler

ht

[ ] h li41 h Vi1
Midpoint RK4-Classic RK4-3/8



Empirical Evaluation

Table 1: Evaluation accuracy on ordered and permuted pixel-by-pixel MNIST.

Name ordered permuted N  # params
LSTM baseline by ( 97.3% 92.7% 128 ~68K
MomentumLSTM 1|m 99.1% 94.7% 256 ~270K
Unitary RNN |W|M 95.1% 91.4% 512 ~9K
Full Capacity Unitary RNN (Wisdom et al. E016| 96.9% 94.1% 512 =270K
Soft orth. RNN (Vorontsov et al.[2017) 94.1% 91.4% 128 ~18K
Kronecker RNN (Jose et al.[[2018 96.4% 94.5% 512 ~11K
Antisymmteric R2019 98.0%  95.8% 128 ~I10K
Incremental RNN (Kag et al.][2020 98.1% 95.6% 128 ~4K/8K
Exponential RNN (Lezcano-Casado & Martinez-Rubio)2019)  98.4% 96.2% 360  ~69K
Sequential NAIS-Net (Ciccone et al.|[2018) 94.3% 90.8% 128 ~18K
Lipschitz RNN using Euler (ours) 99.0% 94.2% 64 ~9K
Lipschitz RNN using RK2 (ours) 99.1% 94.2% 64 ~9K
Lipschitz RNN using Euler (ours) 99.4% 96.3% 128 ~34K
Lipschitz RNN using RK2 (ours) 99.3% 96.2% 128 ~34K




Robustness with Respect to Input Perturbations

test accuracy
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From Good Old RNNs to SDEs: An lllustration

» Two steps:
(1) Adding leaky integrator (“damping” term):

hiyr = ahy + Bf(he, z1) (10)
(2) Injecting noise (various motivations and benefits):
ht+1 :Oéht+,3f(ht7$t)+9§t7 a7570>0a (11)

where the & are i.i.d. random vectors (e.g., zero mean Gaussian)



From Good Old RNNs to SDEs: An lllustration

» Two steps:
(1) Adding leaky integrator (“damping” term):

hiv1 = ahe + Bf(he, ) (10)
(2) Injecting noise (various motivations and benefits):
ht+1 :aht'f'ﬁf(hhmt)—’—egh 0[7579>07 (11)

where the & are i.i.d. random vectors (e.g., zero mean Gaussian)

> Setting a =1 — vyAt, = At, 8 = v/ Ato and & = i.i.d. standard Gaussian, we get
Euler-Mayurama approximation of the stochastic differential equation:

dht = —’}/htdt + f(ht,xt)dt + O'dBt, te [O,T], (12)

where (B¢):>0 is a Brownian motion.



Noisy Recurrent Neural Networks (NeurlPS 2021)

Let = be an input signal, we consider the following (It6) SDE model
dhy = f(he,x) dt + o(he, x¢) d By, yr = Vhy, (13)

where (By);>¢ is an r-dimensional Brownian motion.

» The functions f and o are referred to as the drift and diffusion coefficients, respectively.



Noisy Recurrent Neural Networks (NeurlPS 2021)
Let 2 be an input signal, we consider the following (1td) SDE model
dhy = f(he,ze) dt + o(he, x¢) d By, yr = Vhy, (13)
where (By);>¢ is an r-dimensional Brownian motion.

» The functions f and o are referred to as the drift and diffusion coefficients, respectively.
>

f(h,z) = Ah+a(Wh+ Uz + ), (14)

where a : R — R is a Lipschitz continuous scalar activation function.

o(h,z) = €(o1] + ozdiag(f(h,z))), (15)

where the noise level € > 0 is small, and o1 > 0 and o2 > 0 are tunable parameters

» Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of the learning model against data perturbations.



Robustness with Respect to Input Perturbations

test accuracy

Table 1: Robustness w.r.t. white noise (o) and S&P («) perturbations on the ordered MNIST task.

1.0
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Name clekan 0=01 0=02 0=03 ‘ a=003 a=0.05 a=0.1
Antisymmetric RNN 97.5%  45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN 99.1%  96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN 96.7%  86.7%  58.1%  33.3% 83.6% 70.7% 43.4%
Lipschitz RNN 99.2%  98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
Noisy RNN (mult./add. noise: 0.02/0.05) 99.1% 98.9%  92.2% 73.5% | 98.5% 97.1%  85.5%
--+-- Noisy RNN 10
————— Lipschitz RNN
fffff Antisymmetric RNN 0.8
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(2) White noise perturbations.

amount of noise

(b) Salt and pepper perturbations.



Electrocardiogram (ECG) Classification

» The Electrocardiogram (ECG) classification task aims to discriminate between normal and
abnormal heart beats of a patient that has severe congestive heart failure.

» We use 500 sequences of length 140 for training, and 4,000 sequences for testing.

4 Normal Normal Normal
2
0
S \
-4
4 Anomaly Anomaly Anomaly

0
- \
-4
50 100

0 50 100 150 0 150 0 50 100 150



Results for Electrocardiogram (ECG) Classification

Table 2: Robustness w.r.t. white () and multiplicative (oas) noise perturbations on the ECG task.

Name cean 0=04 0=08 0=12|0oy=04 ox=08 oy=12
Antisymmetric RNN 97.1% 96.6%  91.6%  77.0% 96.6% 94.6% 91.2%
CoRNN 97.5%  96.8% 92.9% 87.2% 93.9% 85.4% 78.4%
Exponential RNN 97.4% 95.6%  86.4%  76.7% 95.7% 89.4% 81.3%
Lipschitz RNN 97.7%  97.4% 95.1% 88.9% 97.6% 97.0% 95.6%

Noisy RNN (mult./add. noise: 0.03/0.06) 97.7% 97.5% 96.3%  92.6% 97.7% 97.3% 96.5%

1.00 1.00
LLLLIEE Sepmied
0.95 0.95
> 0.90 0.90
®
*8- 0.85 0.85
g 0.80 0.80{ " N.OISYBNN
PO . . R e e Lipschitz RNN el
§ 0.75 0.751 e Antisymmetric RNN S
L )
0.70 0.70{ ~°~ CORNN )
--+-- expRNN
0.65 . 0.65
’ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
amount of noise amount of noise

(a) Additive white noise perturbations. (b) Multiplicative white noise perturbations.



Regularization Induced by Noise Injection

Theorem 2: Implicit regularization induced by noise injection

Under mild assumption on f and o,

B0 = £(R) + S 1Q(RS) + ()] + O(E), (16)

as € — 0, where the terms Q and R are given by

Q(R®) = VI(h3,) Zak 1Par 1k Z Sm—1 VEC U, (17)
B M
R(A%) =" dmatr(oh, 1% 1 Hysl @p—1mom—1), (18)
m=1
with vec vy, a vector with the pth component (p =1,...,dy):
[om]P = tr(og, 19370 mHps [far]” ®rr—2,m0m—1)- (19)
Moreover, o o
IQ(R%)| < C@A?, |R(R)| < CRA, (20)

for Cg,CRr > 0 independent of A.
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From Multi-Resolution to Long Expressive Memory Units

» A simple example of a system of two-scale ODEs is given by

dfyi dz

o =7, (c(Wyz+Vyx+b,)—vy), —=7(c(W,y+V.x+b,)—2).

dt
» Here 7, and 7, are the two time scales,

» y(t) € R%, and z(t) € R% are the vectors of slow and fast variables.

(21)



From Multi-Resolution to Long Expressive Memory Units

» A simple example of a system of two-scale ODEs is given by

d
7, (0 (W,z+ Vyx+by) —y), d—j:Tz(o(Wzy+sz+bz)—z). (21)

dy _
dt

» Here 7, and 7, are the two time scales,

> y(t) € R%, and z(t) € R% are the vectors of slow and fast variables.

> Two scales (one fast and one slow) are not enough for for complicate problems, in practice.



From Multi-Resolution to Long Expressive Memory Units

» A simple example of a system of two-scale ODEs is given by

d d
%:Ty(a(wyz+vyx+by)fy), d—j:Tz(o(Wzerszerz)—z). (21)

» Here 7, and 7, are the two time scales,

> y(t) € R%, and z(t) € R% are the vectors of slow and fast variables.
> Two scales (one fast and one slow) are not enough for for complicate problems, in practice.

» We can generalize this idea to a multiscale version, provided by the following set of ODEs,

dy
dt
dz

dt

6 (Way +Vou+by)® (0 (Wyz+ Vyu+b,)—y),
(22)
ﬁ'(le +V1u + bl) © (0’ (Wzy + Vzu+ bz) - Z) .



Training Long Expressive Memory Units

» We discretize the system of ODEs with using an implicit-explicit time-stepping scheme

At, = At6(W1yn—1 + Viu, + by),

At,, = At6(Way,_1 + Vau, + by),
zn=(1—-At,) ® 2,1+ At, ©0(W.y,n—1 + V,u, +b,),
Yn = (1 — At,) O yp—1 + At, © 0(Wy 2z, + Vyu, +by).

(23)

» The particular model mitigates the exploding and vanishing gradients problem.
» We can show that this model is a universal approximation of general dynamical systems,

» and also a universal approximation of multiscale dynamical systems.



Results

Table 3: Test accuracies on Googlel2 (benchmark for speech recognition).

Model test accuracy  # units  # params
tanh-RNN  73.4% 128 27k
LSTM 94.9% 128 107k
GRU 95.2% 128 80k
expRNN 92.3% 128 19k
coRNN 94.7% 128 44k
LEM 95.7% 128 107k

Table 4: Test L? error on heart-rate prediction.

Model test L2 error  # units  # params
LSTM 9.93 128 67k
expRNN 1.63 256 34k
coRNN 1.61 128 34k
UnlCORNN (3 layers) 1.31 128 34k

LEM 0.85 128 67k
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A Naive Deep Learning Approach for Sequence Modeling

» Train a neural network F : R™ — R™ that learns the following map
Xer1 = F(xy), t=0,1,2,...,T.
» During inference time, we can obtain predictions by composing the model k-times
Xippk = FoFoFo ...oF(xy).

» This approach typically fails to provide accurate predictions over long time horizons.

» Further, F is difficult to analyze and ignores any prior knowledge.

O p Black Box 6‘ i

Xt Xt41




Dynamic Autoencoders

» The general idea is to design a model that consists of three components.
» Non-linear encoder ¥: embeds inputs in a low-dimensional latent space.
> A linear forward map €: evolves latent variables in time.
» Non-linear decoder ®: lifts latent variables back in high-dimensional space.

encoder dynamics decoder 6

€ e
Xt — —
/ L S




Dynamic Autoencoders

» The general idea is to design a model that consists of three components.
» Non-linear encoder ¥: embeds inputs in a low-dimensional latent space.
> A linear forward map €: evolves latent variables in time.
» Non-linear decoder ®: lifts latent variables back in high-dimensional space.

encoder dynamics decoder c
‘ 7 |zen

€ 0w

B B

Xy

» We train the DAE by balancing between the forward prediction loss and reconstruction loss

T-1

o1
min - D xerk — @0 Qo010 (x5 + Alxi — B0 T(xy)]3.
t=0

prediction loss reconstruction loss



Dynamic Autoencoders Learn Coordinate Transformations

» The key observation is that we can learn a coordinate transformation so that the latent
variables q; = ¥(xy,) can be evolved in time by a linear map

élt+k = Qth-

Nonlinear Trajectory in New Space with
High Dimensional Space Linearized Trajectory

P \f‘lq

Nonlinear
Mappings

Decode




Motivated by Applied Koopmanism

» Koopman analysis provides a framework to study nonlinear dynamical system that is based
on a coordinate transformation which embeds a nonlinear system in a space where the
temporal evolution can be described by a linear operator.

Xpt1 = Alx,) — Zn = g(xp) = Zpt1 =Kz,
— —— ——

nonlinear coordinate transform linear

» [C is a linear operator that evolves the observables g(x;,) in time.



Motivated by Applied Koopmanism

» Koopman analysis provides a framework to study nonlinear dynamical system that is based
on a coordinate transformation which embeds a nonlinear system in a space where the
temporal evolution can be described by a linear operator.

Xpt1 = Alx,) — Zn = g(xp) = Zpt1 =Kz,
— —— ——

nonlinear coordinate transform linear

» [C is a linear operator that evolves the observables g(x;,) in time.

(5 ) A i) A (i)
= N vy R ey




Motivated by Applied Koopmanism

» Koopman analysis provides a framework to study nonlinear dynamical system that is based
on a coordinate transformation which embeds a nonlinear system in a space where the
temporal evolution can be described by a linear operator.

Xpt1 = Axp) — zn = g(xp) = zZpr1 =Kz,
— — —

nonlinear coordinate transform linear

» [Cis a linear operator that evolves the observables g(x,,) in time.

(o - ()i
BT o YN S ¥

(-2 (@2 (q




Consistent Dynamic Autoencoders (ICML 2020) 3

» We can learn a model that learns both a forward map € and backward map €.

CQ

Xt

encoder
R —
—_— @
‘ -

dynamics

decoder

6\

Xe41

C'

A

Xt

3Forecasting Sequential Data Using Consistent Koopman Autoencoders (ICML, 2020).



Consistent Dynamic Autoencoders (ICML 2020) 3

» We can learn a model that learns both a forward map € and backward map €.

encoder dynamics  decoder C

Q. - & W

Xt

/

» Then we can promote consistency by considering the following loss term

K

1 1
k=1

where € and €, are the upper k rows of " and leftmost k& columns of the matrix €.

3Forecasting Sequential Data Using Consistent Koopman Autoencoders (ICML, 2020).



Consistency Stabilizes Weights
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High-dimensional Nonlinear Pendulum with no Friction

Prediction errors, over a time horizon of 1000 steps, for clean and noisy observations from a
pendulum with initial conditions 6y = 0.8 (top row) and 6y = 2.4 (bottom row).
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High-dimensional Fluid Flow Past a Cylinder

Prediction error

Prediction error
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Summary

» A richer understanding between DS and DL enables us to design more robust models.

» Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of the learning model against data perturbations

» Our empirical results show that CT RNNs achieve superior robustness to input
perturbations, while maintaining state-of-the-art generalization performance

Machine Learning /\ Dynamical Systems

Y\"’/

The dynamical systems perspective can help us to better understand black-box
ML methods as well as to help us to design more robust models.



