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l Lots of types of “sensors”

Examples:

* Physical/environmental: temperature, air quality, oil, etc.

» Consumer: RFID chips, SmartPhone, Store Video, etc.

* Health care: Patient Records, Images & Surgery Videos, etc.

» Financial: Transactions for reqgulations, HF T, etc.

* Internet/e-commerce: clicks, email, etc. for user modeling, etc.
» Astronomical/HEP: images, experiments, etc.

Common theme: easy to generate A LOT of data

Questions:

* What are similarities/differences i.t.o. funding drivers, customer
demands, questions of interest, time sensitivity, efc. about "sensing”
in these different applications?

* What can we learn from one area and apply to another area?



) BIG da’ra”? MASSIVE da’ra””

SCIENCE IN THE
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NYT, Feb 11, 2012: “The Age of Big Da’ra"

* "What is Big Data? A meme and a marketing term, for sure, but also
shorthand for advancing trends in technology that open the door to a new
approach fo understanding the world and making decisions. ..."

Why are big data big?
* Generate data at different places/times and different resolutions

* Factor of 10 more data is not just more data, but different data



) BIG data??? MASSIVE data????

MASSIVE data.

* Internet, Customer Transactions, Astronomy/HEP = "Petascale”

* One Petabyte = watching 20 years of movies (HD) = listening o 20,000
years of MP3 (128 kbits/sec) = way too much to browse or comprehend

massive data.

* 10° people typed at 106 DNA SNPs; 10° or 10° node social network; etc.

In either case, main issues:

« Memory management issues, e.g., push computation to the data

* Hard fo answer even basic questions about what data "looks like"



How do we view BIG data?

Can’t anybody see who
| am or want to be?

Wow. It's big.
| need fast
algorithms.

Wow . | need
a bigger
machine.

Wow. This isa
mess. | better
clean it up.

Wow. | need
to posit a
rmodel.

Wow. It's not
smoath. | need
regularization.




) Algorithmic vs. Statistical Perspectives

Lambert (2000), Mahoney (2010)

Computer Scientists

* Data: are a record of everything that happened.

* Goal: process the data to find interesting patterns and associations.
* Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists)

* Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

* Goal. is to extract information about the world from noisy data.

* Methodology. Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.



) Thinking about large-scale data?

Data generation is modern version of microscope/telescope:

« See things couldn't see before: e.g., movement of people, clicks and
interests; tracking of packages; fine-scale measurements of temperature,
chemicals, etc.

* Those inventions ushered new scientific eras and new understanding of
the world and new technologies to do stuff

Easy things become hard and hard things become easy:
* Easier to see the other side of universe than bottom of ocean

* Means, sums, medians, correlations is easy with small data

Our ability to generate data far exceeds our

ability to extract insight from data. f—oort...




] Many challenges ...

* Tradeoffs between prediction & understanding

* Tradeoffs between computation & communication,

* Balancing heat dissipation & energy requirements

- Scalable, interactive, & inferential analytics

- Temporal constraints in real-time applications

- Understanding “structure” and "noise” at large-scale (*)

* Even meaningfully answering "What does the data look like?"

=/



Micro-markets in sponsored search

1.4 Million Advertisers

Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?

What is the CTR and
advertiser ROl of sports
gambling keywords?

Movies Media

Gambling \ iiS_F;Qrtj
_ videos

10 million keywords



) What about sensors?

Vector space model - analogous to "bag-of-words” model for documents/terms.
* Each sensor is a "document,” a vector in a high-dimensional Euclidean space

* Each measurement is a "term”, describing the elements of that vector

* (Advertisers and bidded-phrases--and many other things--are also analogous.)

Can also define sensor-measurement graphs :

» Sensors are nodes, and edges are between sensors with similar measurements

n terms (measurements)

F
= m -
documents A -
sensors
: ( ) A;; = frequency of j-th term in i-th

document (value of j-th measurement
at i-th sensor)




, Cluster-quality Score: Conductance

S

s How cluster-like is a set of nodes?

Idea: balance "boundary” of cluster
with "volume" of cluster

= Need a natural intuitive measure:

Conductance (normalized cut)

. corresponds to better
clusters of nodes



l Graph partitioning

A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
* Not much edge weight across the cut (cut quality)

» Both sides contain a lot of nodes

Standard formalizations of the bi-criterion are NP-hard!

Approximation algorithms:

* Spectral methods™ - (compute eigenvectors)
* Local improvement - (important in practice)
* Multi-resolution - (important in practice)

* Flow-based methods* - (mincut-maxflow)

* comes with strong underlying theory to guide heuristics



) Comparison of “spectral” versus "flow"

Spectral: Flow:

« Compute an eigenvector « Compute a LP

* "Quadratic” worst-case bounds * O(log n) worst-case bounds
« Worst-case achieved -- on "long « Worst-case achieved -- on
stringy” graphs expanders

« Embeds you on a line (or Kn) « Embeds you in L1

Two methods:
« Complementary strengths and weaknesses

* What we compute will depend on approximation
algorithm as well as objective function.




wge Analogy: What does a protein look like?

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.

background medium Experimental Procedure:
Scﬁgg:? * Generate a bunch of output data by using
e the unseen object to filter a known input
N clutter , target SignaL
receiver 1 *  Reconstruct the unseen object given the

'

-+ probing fields output signal and what we know about the

m— artifactual properties of the input signal.

transmitter



Popular small networks
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Large Social and Information Networks

e Social nets | Nodes | Edges J Description
LIVEJOURNAL 1,843,953 | 42,845,684 | Blog Iriendships [4]
EPINIONS 75,877 405,739 | Who-trusts-whom [35]
FLICKR 404,733 2,110,078 | Photo sharing [21]
DELICIOUS 147,567 301,921 | Collaborative tagging
CA-DBLP 317,080 1,049,866 | Co-authorship (CA) [4]
CA-COND-MAT 21,363 91,286 | CA cond-mat [25]

e Information networks

CIT-HEP-TH 27,400 352,021 | hep-th citations [13]
Broc-PosTs 437,305 565,072 | Blog post links [28]

e Web graphs

WEB-GOOGLE 855,802 4,291,352 | Web graph Google
WEB-wT10G 1,458,316 6,225,033 | TREC WT10G web

e Bipartite afliliation (authors-to-papers) networks

ATp-DELP G15.67T8 944,456 | DBLP [25]
ATP-ASTRO-PH 54,1498 131,123 | Arxiv astro-ph [25]
e Internet networks

AS 6,474 12,572 | Autonomous systems
GNUTELLA 62,561 147,878 | P2P network [36]

Table 1: Some of the network datasets we studied.



Typical example of our findings

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)

General relativity collaboration network
(pretty small: 4,158 nodes, 13,422 edges)
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) Large Social and Information Networks

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
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. Interpretation: "Whiskers"” and the
j "core” of large informatics graphs

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)

« "Whiskers"

» maximal sub-graph detached
from network by removing a
single edge

« contains 40% of nodes and 20%
of edges

« “Core"

* the rest of the graph, i.e., the
2-edge-connected core

* Global minimum of NCPP is a whisker

« BUT, core itself has nested
whisker-core structure
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) Local "structure” and global "noise”

Many (most/all?) large informatics graphs (& massive data in general?)
* have local structure that is meaningfully geometric/low-dimensional

« does not have analogous meaningful global structure

Intuitive example:

* What does the graph of you and your
102 closest Facebook friends “look like"?

* What does the graph of you and your
102 closest Facebook friends “look like"?




j Many lessons ...

This is problematic for MANY things people want to do:

- statistical analysis that relies on asymptotic limits
* recursive clustering algorithms

« analysts who want a few meaningful clusters

More data need not be better if you:

« don't have control over the noise

 want "“islands of insight” in the “sea of data"

How does this manifest itself in your "sensor” application?
* Needles in haystack; correlations; time series -- "scientific” apps

* Historically, CS & database apps did more summaries & aggregates



) Big changes in the past ... and future

Consider the creation of:

* Modern Physics * OR and Management Science
* Computer Science *Transistors and Microelectronics
* Molecular Biology « Biotechnology

These were driven by new measurement techniques and
technological advances, but they led to:

* big new (academic and applied) questions

* new perspectives on the world

* lots of downstream applications

We are in the middle of a similarly big shif+!



) Conclusions

HUGE range of "sensors” are generating A LOT of data:
* will lead to a very different world in many ways

Large-scale data are very different than small-scale data.

» Easy things become hard, and hard things become easy

» Types of questions that are meaningful to ask are different

- Structure, noise, etfc. properties are often deeply counterintuitive

Different applications are driven by different considerations
* next-user-interaction, qualitative insight, failure modes, false
positives versus false negatives, tfime sensitivity, etc.

Algorithms can compute answers to known questions
» but algorithms can also be used as "experimental probes” of the data
to form questions!



MMDS Workshop on

"Algorithms for Modern Massive Data Sets”
) (http://mmds.stanford.edu)

at Stanford University, July 10-13, 2012

Objectives:

- Address algorithmic, statistical, and mathematical challenges in modern statistical
data analysis.

- Explore novel techniques for modeling and analyzing massive, high-dimensional, and
nonlinearly-structured data.

- Bring together computer scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.

Organizers: M. W. Mahoney, A. Shkolnik, 6. Carlsson, and P. Drineas,

Registration is available now!



