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Outline

Machine Learning’s “Inverse” Problem

Your choice:

1st Order Methods: FLAG n’ FLARE, or

disentangle geometry from sequence of iterates

2nd Order Methods: Stochastic Newton-Type Methods

“simple” methods for convex
“more subtle” methods for non-convex
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Introduction

Big Data ... Massive Data ...

Michael W. Mahoney (UC Berkeley) Second order machine learning 3 / 96



Introduction

Humongous Data ...

Michael W. Mahoney (UC Berkeley) Second order machine learning 4 / 96



Introduction

Big Data

How do we view BIG data? 
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Introduction

Algorithmic & Statistical Perspectives ...

Computer Scientists

Data: are a record of everything that happened.

Goal: process the data to find interesting patterns and associations.

Methodology: Develop approximation algorithms under different models of
data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists, etc)

Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

Goal: is to extract information about the world from noisy data.

Methodology: Make inferences (perhaps about unseen events) by positing a
model that describes the random variability of the data around the
deterministic model.
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Introduction

... are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:

Problems often involve computation, but the study of computation per se is
secondary

Only makes sense to develop algorithms for well-posed problems1

First, write down a model, and think about computation later

Computer science:

Easier to study computation per se in discrete settings, e.g., Turing
machines, logic, complexity classes

Theory of algorithms divorces computation from data

First, run a fast algorithm, and ask what it means later

1Solution exists, is unique, and varies continuously with input data
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Introduction

Context: My first stab at deep learning
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A blog about my first stab at deep learning
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Efficient and Effective Optimization Methods

Problem Statement

Problem 1: Composite Optimization Problem

min
x∈X⊆Rd

F (x) = f (x) + h(x)

f : Convex and Smooth

h: Convex and (Non-)Smooth

Problem 2: Minimizing Finite Sum Problem

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

fi (x)

fi : (Non-)Convex and Smooth

n� 1
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Efficient and Effective Optimization Methods

Modern “Big-Data”

Classical Optimization Algorithms

Effective but Inefficient

Need to design variants, that are:

1 Efficient, i.e., Low Per-Iteration Cost

2 Effective, i.e., Fast Convergence Rate
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Efficient and Effective Optimization Methods

Scientific Computing and Machine Learning share the same challenges,
and use the same means,

but to get to different ends!

Machine Learning has been, and continues to be, very busy designing
efficient and effective optimization methods
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Efficient and Effective Optimization Methods

First Order Methods

• Variants of Gradient Descent (GD):

Reduce the per-iteration cost of GD ⇒ Efficiency

Achieve the convergence rate of the GD ⇒ Effectiveness

x(k+1) = x(k) − αk∇F (x(k))
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Efficient and Effective Optimization Methods

First Order Methods

E.g.: SAG, SDCA, SVRG, Prox-SVRG, Acc-Prox-SVRG,
Acc-Prox-SDCA, S2GD, mS2GD, MISO, SAGA, AMSVRG, ...
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Efficient and Effective Optimization Methods

But why?

Q: Why do we use (stochastic) 1st order method?

Cheaper Iterations? i.e., n� 1 and/or d � 1

Avoids Over-fitting?
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Efficient and Effective Optimization Methods

1st order method and “over-fitting”

Challenges with “simple” 1st order method for “over-fitting”:

Highly sensitive to ill-conditioning

Very difficult to tune (many) hyper-parameters

“Over-fitting” is difficult with “simple” 1st order method!
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Efficient and Effective Optimization Methods

Remedy?

1 “Not-So-Simple” 1st order method, e.g., accelerated and adaptive

2 2nd order methods, e.g., methods

x(k+1) = x(k) − [∇2F (x(k))]−1∇F (x(k))
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Efficient and Effective Optimization Methods

Your Choice Of....
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Efficient and Effective Optimization Methods

Which Problem?

1 “Not-So-Simple” 1st order method: FLAG n’ FLARE

Problem 1: Composite Optimization Problem

min
x∈X⊆Rd

F (x) = f (x) + h(x)

f : Convex and Smooth, h: Convex and (Non-)Smooth

2 2nd order methods: Stochastic Newton-Type Methods

Stochastic Newton, Trust Region, Cubic Regularization

Problem 2: Minimizing Finite Sum Problem

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

fi (x)

fi : (Non-)Convex and Smooth, n � 1
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Efficient and Effective Optimization Methods

Collaborators

FLAG n’ FLARE
Fred Roosta (UC Berkeley)
Xiang Cheng (UC Berkeley)
Stefan Palombo (UC Berkeley)
Peter L. Bartlett (UC Berkeley & QUT)

Sub-Sampled Newton-Type Methods for Convex
Fred Roosta (UC Berkeley)
Peng Xu (Stanford)
Jiyan Yang (Stanford)
Christopher Ré (Stanford)

Sub-Sampled Newton-Type Methods for Non-convex
Fred Roosta (UC Berkeley)
Peng Xu (Stanford)

Implementations on GPU, etc.
Fred Roosta (UC Berkeley)
Sudhir Kylasa (Purdue)
Ananth Grama (Purdue)
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First-order methods: FLAG n’ FLARE

Subgradient Method

Composite Optimization Problem

min
x∈X⊆Rd

F (x) = f (x) + h(x)

f : Convex (Non-)Smooth

h: Convex (Non-)Smooth
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First-order methods: FLAG n’ FLARE

Subgradient Method

Algorithm 1 Subgradient Method

1: Input: x1, and T
2: for k = 1, 2, . . . ,T − 1 do
3: - gk ∈ ∂ (f (xk) + h(xk))

4: - xk+1 = arg minx∈X
{
〈gk , x〉+ 1

2αk
‖x− xk‖2

}
5: end for
6: Output: x̄ = 1

T

∑T
t=1 xt

αk : Step-size

Constant Step-size: αk = α

Diminishing Step size
∑∞

k=1 αk =∞, limk→∞ αk = 0
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First-order methods: FLAG n’ FLARE

Example: Logistic Regression

{ai , bi}: features and labels

ai ∈ {0, 1}d , bi ∈ {0, 1}

F (x) =
n∑

i=1

log(1 + e〈ai ,x〉)− bi 〈ai , x〉

∇F (x) =
n∑

i=1

(
1

1 + e−〈ai ,x〉
− bi

)
ai

Infrequent Features ⇒ Small Partial Derivative
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First-order methods: FLAG n’ FLARE

predictive vs. irrelevant features

Very infrequent features ⇒ Highly predictive (e.g. “CANON” in
document classification)

Very frequent features ⇒ Highly irrelevant (e.g. “and” in document
classification)
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First-order methods: FLAG n’ FLARE

AdaGrad [Duchi et al., 2011]

Frequent Features ⇒ Large Partial Derivative ⇒ Learning Rate ↓

Infrequent Features ⇒ Small Partial Derivative ⇒ Learning Rate ↑

Replace αk with scaling matrix adaptively...

Many follows up works: RMSProp, Adam, Adadelta, etc...
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First-order methods: FLAG n’ FLARE

AdaGrad [Duchi et al., 2011]

Algorithm 2 AdaGrad

1: Input: x1, η and T
2: for k = 1, 2, . . . ,T − 1 do
3: - gk ∈ ∂f (xk)
4: - Form scaling matrix Sk based on {gt ; t = 1, . . . , k}
5: - xk+1 = arg minx∈X

{
〈gk , x〉+ h(x) + 1

2 (x− xk)TSk(x− xk)
}

6: end for
7: Output: x̄ = 1

T

∑T
t=1 xt
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First-order methods: FLAG n’ FLARE

Convergence

Convergence

Let x∗ be an optimum point. We have:

AdaGrad [Duchi et al., 2011]:

F (x̄)− F (x∗) ≤ O

(√
dD∞α√
T

)
,

where α ∈ [ 1√
d
, 1] and D∞ = maxx,y∈X ‖y − x‖∞, and

Subgradient Descent:

F (x̄)− F (x∗) ≤ O
(

D2√
T

)
where D2 = maxx,y∈X ‖y − x‖2.
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First-order methods: FLAG n’ FLARE

Comparison

Competitive Factor: √
dD∞α
D2

D∞ and D2 depend on geometry of X
e.g., X = {x; ‖x‖∞ ≤ 1} then D2 =

√
dD∞

α =
∑d

i=1

√∑T
t=1[gt ]2

i√
d
∑T

t=1 ‖gt‖2
depends on {gt ; t = 1, . . . ,T}
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First-order methods: FLAG n’ FLARE

Improving the T dependence

Problem 1: Composite Optimization Problem

min
x∈X⊆Rd

F (x) = f (x) + h(x)

f : Convex and Smooth (w. L-Lipschitz Gradient)

h: Convex and (Non-)Smooth

Subgradient Methods: O
(

1√
T

)
ISTA: O

(
1
T

)
FISTA [Beck and Teboulle, 2009]: O

(
1
T 2

)
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First-order methods: FLAG n’ FLARE

Best of both worlds?

Accelerated Gradient Methods ⇒ Optimal Rate

e.g., 1
T 2 vs. 1

T vs. 1√
T

Adaptive Gradient Methods ⇒ Better Constant
√
dD∞α vs. D2

How about Accelerated and Adaptive Gradient Methods?
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First-order methods: FLAG n’ FLARE

FLAG: Fast Linearly-Coupled Adaptive Gradient Method

FLARE: FLAg RElaxed
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First-order methods: FLAG n’ FLARE

FLAG [CRPBM, 2016]

Algorithm 3 FLAG

1: Input: x0 = y0 = z0 and L
2: for k = 1, 2, . . . ,T do
3: - yk+1 = Prox(xk)
4: - Gradient Mapping gk = −L(yk+1 − xk)
5: - Form Sk based on { gt

‖gt‖ ; t = 1, . . . , k}
6: - Compute ηk
7: - zk+1 = arg minz∈X 〈ηkgk , z− zk〉+ 1

2 (z− zk)TSk(z− zk)
8: - xk = Linearly Couple (yk+1, zk+1)
9: end for

10: Output: yT+1

Prox(xk) := arg min
x∈X

{
〈∇f (xk), x〉+ h(x) +

L

2
‖x− xk‖2

2

}
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First-order methods: FLAG n’ FLARE

FLAG Simplified

Algorithm 4 Birds Eye View of FLAG

1: Input: x0

2: for k = 1, 2, . . . ,T do
3: - yk : Usual Gradient Step
4: - Form Gradient History
5: - zk : Scaled Gradient Step
6: - Find mixing wight w via Binary Search
7: - xk+1 = (1− w)yk+1 + wzk+1

8: end for
9: Output: yT+1
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First-order methods: FLAG n’ FLARE

Convergence

Convergence

Let x∗ be an optimum point. We have:

FLAG [CRPBM, 2016]:

F (x̄)− F (x∗) ≤ O
(
dD2
∞β

T 2

)
,

where β ∈ [ 1
d , 1] and D∞ = maxx,y∈X ‖y − x‖∞, and

FISTA [Beck and Teboulle, 2009]:

F (x̄)− F (x∗) ≤ O
(
D2

2

T 2

)
where D2 = maxx,y∈X ‖y − x‖2.
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First-order methods: FLAG n’ FLARE

Comparison

Competitive Factor:
dD2
∞β

D2
2

D∞ and D2 depend on geometry of X
e.g., X = {x; ‖x‖∞ ≤ 1} then D2 =

√
dD∞

β =

(∑d
i=1

√∑T
t=1[g̃t ]2

i

)2

dT depends on {g̃t := gt/‖gt‖; t = 1, . . . ,T}
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First-order methods: FLAG n’ FLARE

Linear Coupling

Linearly Couple of (yk+1, zk+1) via a “ε-Binary Search”:

Find ε approximation to the root of non-linear equation

〈Prox (ty + (1− t)z)− (ty + (1− t)z) , y − z〉 = 0,

where

Prox(x) := arg min
y∈C

h(y) +
L

2
‖y −

(
x− 1

L
∇f (x)

)
‖2

2.

At most log(1/ε) steps using bisection

At most 2 + log(1/ε) Prox evals per-iteration more than FISTA

Can be Expensive!
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First-order methods: FLAG n’ FLARE

Linear Coupling

Linearly approximate:

〈tProx (y) + (1− t)Prox (z)− (ty + (1− t)z) , y − z〉 = 0.

Linear equation in t, so closed form solution!

t =
〈z− Prox(z), y − z〉

〈(z− Prox(z))− (y − Prox(y)), y − z〉

At most 2 Prox evals per-iteration more than FISTA

Equivalent to ε-Binary Search with ε = 1/3

Better But Might Not Be Good Enough!
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First-order methods: FLAG n’ FLARE

FLARE: FLAg RElaxed

Basic Idea: Choose mixing weight by intelligent “futuristic” guess

Guess now, and next iteration, correct if guessed wrong

FLARE: exactly the same Prox evals per-iteration as FISTA!

FLARE: has the similar theoretical guarantee as FLAG!
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First-order methods: FLAG n’ FLARE

L(x1, x2, . . . , xC ) =
n∑

i=1

C∑
c=1

−1(bi = c) log

(
e〈ai ,xc 〉

1 +
∑C−1

b=1 e〈ai ,xb〉

)

=
n∑

i=1

(
log

(
1 +

C−1∑
c=1

e〈ai ,xc 〉
)
−

C−1∑
c=1

1(bi = c)〈ai , xc〉

)
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First-order methods: FLAG n’ FLARE

Classification: 20 Newsgroups

Prediction across 20 different newsgroups

Data
Train
Size

Test Size d Classes

20

Newsgroups
10,142 1,127 53,975 20

min
‖x‖∞≤1

L(x1, x2, . . . , xC )
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First-order methods: FLAG n’ FLARE

Classification: 20 Newsgroups
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First-order methods: FLAG n’ FLARE

Classification: Forest CoverType

Predicting forest cover type from cartographic variables

Data
Train
Size

Test Size d Classes

CoveType 435,759 145,253 54 7

min
x∈Rd
L(x1, x2, . . . , xC ) + λ‖x‖1
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First-order methods: FLAG n’ FLARE

Classification: Forest CoverType
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First-order methods: FLAG n’ FLARE

Regression: BlogFeedback

Prediction of the number of comments in the next 24 hours for blogs

Data Train Size Test Size d

BlogFeedback 47,157 5,240 280

min
x∈Rd

1

2
‖Ax− b‖2

2 + λ‖x‖1
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First-order methods: FLAG n’ FLARE

Regression: BlogFeedback
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Second-order methods: Stochastic Newton-Type Methods

1 2nd order methods: Stochastic Newton-Type Methods

Stochastic Newton (think: convex)
Stochastic Trust Region (think: non-convex)
Stochastic Cubic Regularization (think: non-convex)

Problem 2: Minimizing Finite Sum Problem

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

fi (x)

fi : (Non-)Convex and Smooth

n� 1
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Second-order methods: Stochastic Newton-Type Methods

Second Order Methods

Use both gradient and Hessian information

Fast convergence rate

Resilient to ill-conditioning

They “over-fit” nicely!

However, per-iteration cost is high!
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Second-order methods: Stochastic Newton-Type Methods

Sensorless Drive Diagnosis

n : 50, 000, p = 528,No. Classes = 11, λ : 0.0001

Figure: Test Accuracy
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Second-order methods: Stochastic Newton-Type Methods

Sensorless Drive Diagnosis

n : 50, 000, p = 528,No. Classes = 11, λ : 0.0001

Figure: Time/Iteration
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Second-order methods: Stochastic Newton-Type Methods

Second Order Methods

Deterministically approximating second order information cheaply

Quasi-Newton, e.g., BFGS and L-BFGS [Nocedal, 1980]

Randomly approximating second order information cheaply

Sub-Sampling the Hessian [Byrd et al., 2011, Erdogdu et al., 2015,
Martens, 2010, RM-I, RM-II, XYRRM, 2016, Bollapragada et al., 2016,
...]
Sketching the Hessian [Pilanci et al., 2015]
Sub-Sampling the Hessian and the gradient [RM-I & RM-II, 2016,
Bollapragada et al., 2016, ...]
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Second-order methods: Stochastic Newton-Type Methods

Iterative Scheme

x (k+1) = arg min
x∈D∩X

{
F (x(k)) + (x − x(k))Tg(x(k)) +

1

2αk
(x − x(k))TH(x(k))(x − x(k))

}
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Second-order methods: Stochastic Newton-Type Methods

Hessian Sub-Sampling

g(x) = ∇F (x)

H(x) =
1

|S|
∑
j∈S
∇2fj(x)
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Second-order methods: Stochastic Newton-Type Methods

First, let’s consider the convex case....
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Second-order methods: Stochastic Newton-Type Methods

Convex Problems

Each fi is smooth and weakly convex

F is γ-strongly convex
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Second-order methods: Stochastic Newton-Type Methods

“We want to design methods for machine learning that are not as ideal as
Newton’s method but have [these] properties: first of all, they tend to turn
towards the right directions and they have the right length, [i.e.,] the step
size of one is going to be working most of the time...and we have to have

an algorithm that scales up for machine leaning.”

Prof. Jorge Nocedal
IPAM Summer School, 2012

Tutorial on Optimization Methods for ML
(Video - Part I: 50’ 03”)
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Second-order methods: Stochastic Newton-Type Methods

What do we need?

Requirements:

(R.1) Scale up: |S| must be independent of n, or at least smaller than n and
for p � 1, allow for inexactness.

(R.2) Turn to right directions: H(x) must preserve the spectrum of
∇2F (x) as much as possible

(R.3) Not ideal but close: redFast local convergence rate, close to that of
Newton

(R.4) Right step length: Unit step length eventually works
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Second-order methods: Stochastic Newton-Type Methods

Sub-sampling Hessian

Requirements:

(R.1) Scale up: |S| must be independent of n, or at least smaller than n and
for p � 1, allow for inexactness

(R.2) Turn to right directions: H(x) must preserve the spectrum of
∇2F (x) as much as possible

(R.3) Not ideal but close: Fast local convergence rate, close to that of
Newton

(R.4) Right step length: Unit step length eventually works
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Second-order methods: Stochastic Newton-Type Methods

Sub-sampling Hessian

Lemma (Uniform Hessian Sub-Sampling)

Given any 0 < ε < 1, 0 < δ < 1 and x ∈ Rp, if

|S| ≥ 2κ2 ln(2p/δ)

ε2
,

then
Pr
(

(1− ε)∇2F (x) � H(x) � (1 + ε)∇2F (x)
)
≥ 1− δ.
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Second-order methods: Stochastic Newton-Type Methods
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Second-order methods: Stochastic Newton-Type Methods

Error Recursion: Hessian Sub-Sampling

Theorem (Error Recursion)

Using αk = 1, with high-probability, we have

‖x(k+1) − x∗‖ ≤ ρ0‖x(k) − x∗‖+ ξ‖x(k) − x∗‖2,

where

ρ0 =
ε

(1− ε)
, and ξ =

L

2(1− ε)γ
.

ρ0 is problem-independent! ⇒ Can be made arbitrarily small!
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Second-order methods: Stochastic Newton-Type Methods

SSN-H: Q-Linear Convergence

Theorem (Q-Linear Convergence)

Consider any 0 < ρ0 < ρ < 1 and ε ≤ ρ0/(1 + ρ0). If

‖x(0) − x∗‖ ≤ ρ− ρ0

ξ
,

we get locally Q-linear convergence

‖x(k) − x∗‖ ≤ ρ‖x(k−1) − x∗‖, k = 1, . . . , k0

with high-probability.

Possible to get superlinear rate as well.
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Second-order methods: Stochastic Newton-Type Methods

Sub-sampling Hessian
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∇2F (x) as much as possible

(R.3) Not ideal but close: Fast local convergence rate, close to that of
Newton

(R.4) Right step length: Unit step length eventually works
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Second-order methods: Stochastic Newton-Type Methods

Sub-Sampling Hessian

Lemma (Uniform Hessian Sub-Sampling)

Given any 0 < ε < 1, 0 < δ < 1, and x ∈ Rp, if

|S| ≥ 2κ ln(p/δ)

ε2
,

then
Pr
(

(1− ε)γ ≤ λmin (H(x))
)
≥ 1− δ.
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Second-order methods: Stochastic Newton-Type Methods

SSN-H: Inexact Update

Assume X = Rp

Descent Dir.:
{
‖H(x(k))pk +∇F (x(k))‖ ≤ θ1‖∇F (x(k))‖

Step Size:


αk = arg max α

s.t. α ≤ 1

F (x(k) + αpk) ≤ F (x(k)) + αβpT
k ∇F (x(k))

Update:
{

x(k+1) = x(k) + αkpk

0 < β, θ1, θ2 < 1
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Second-order methods: Stochastic Newton-Type Methods

SSN-H Algorithm: Inexact Update

Algorithm 5 Globally Convergent SSN-H with inexact solve

1: Input: x(0), 0 < δ < 1, 0 < ε < 1, 0 < β, θ1, θ2 < 1
2: - Set the sample size, |S|, with ε and δ
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, S, of size |S| and form H(x(k))
5: - Update x(k+1) with H(x(k)) and inexact solve
6: end for
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Second-order methods: Stochastic Newton-Type Methods

Gloabl Convergence SSN-H: Inexact Update

Theorem (Global Convergence of Algorithm 5)

Using Algorithm 5 with θ1 ≈ 1/
√
κ, with high-probability, we have

F (x(k+1))− F (x∗) ≤ (1− ρ)
(
F (x(k))− F (x∗)

)
,

where ρ = αkβ/κ and αk ≥ 2(1−θ2)(1−β)(1−ε)
κ .
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Second-order methods: Stochastic Newton-Type Methods

Local + Global

Theorem

For any ρ < 1 and ε ≈ ρ/
√
κ, Algorithm 5 is globally convergent and after O(κ2)

iterations, with high-probability achieves “problem-independent” Q-linear
convergence, i.e.,

‖x(k+1) − x∗‖ ≤ ρ‖x(k) − x∗‖.

Moreover, the step size of αk = 1 passes Armijo rule for all subsequent iterations.
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Second-order methods: Stochastic Newton-Type Methods

“Any optimization algorithm for which the unit step length works has
some wisdom. It is too much of a fluke if the unit step length

[accidentally] works.”

Prof. Jorge Nocedal
IPAM Summer School, 2012

Tutorial on Optimization Methods for ML
(Video - Part I: 56’ 32”)
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Second-order methods: Stochastic Newton-Type Methods

So far these efforts mostly treated convex problems....

Now, it is time for non-convexity!
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Second-order methods: Stochastic Newton-Type Methods

Non-Convex Is Hard!

Saddle points, Local Minima, Local Maxima

Optimization of a degree four polynomial: NP-hard [Hillar et al.,
2013]

Checking whether a point is not a local minimum: NP-complete
[Murty et al., 1987]
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Second-order methods: Stochastic Newton-Type Methods

All convex problems are the same,
while every non-convex problem is different.

Not sure who’s quote this is!
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Second-order methods: Stochastic Newton-Type Methods

(εg , εH)− Optimality

‖∇F (x)‖ ≤ εg ,

λmin(∇2F (x)) ≥ −εH
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Second-order methods: Stochastic Newton-Type Methods

Trust Region: Classical Method for Non-Convex Problem [Sorensen,
1982, Conn et al., 2000]

s(k) = arg min
‖s‖≤∆k

〈s,∇F (x(k))〉+
1

2
〈s,∇2F (x(k))s〉

Cubic Regularization: More Recent Method for Non-Convex Problem
[Griewank, 1981, Nesterov et al., 2006, Cartis et al., 2011a, Cartis et
al., 2011b]

s(k) = arg min
s∈Rd
〈s,∇F (x(k))〉+

1

2
〈s,∇2F (x(k))s〉+

σk
3
‖s‖3
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Second-order methods: Stochastic Newton-Type Methods

To get iteration complexity, all previous work required:∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ C‖s(k)‖2 (1)

Stronger than “Dennis-Moré”

lim
k→∞

‖
(
H(x(k))−∇2F (x(k))

)
s(k)‖

‖s(k)‖
= 0

We relaxed (1) to∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ ε‖s(k)‖ (2)

Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré and (2)
but not necessarily (1)
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Second-order methods: Stochastic Newton-Type Methods

Recall...

F (x) =
1

n

n∑
i=1

fi (x)
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Second-order methods: Stochastic Newton-Type Methods

Lemma (Complexity of Uniform Sampling)

Suppose ‖∇2fi (x)‖ ≤ K , ∀i . Given any 0 < ε < 1, 0 < δ < 1, and
x ∈ Rd , if

|S| ≥ 16K 2

ε2
log

2d

δ
,

then for H(x) = 1
|S|
∑

j∈S ∇2fj(x), we have

Pr
(
‖H(x)−∇2F (x)‖ ≤ ε

)
≥ 1− δ.

Only top eigenavlues/eigenvectors need to preserved.
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Second-order methods: Stochastic Newton-Type Methods

F (x) =
1

n

n∑
i=1

fi (aT
i x)

pi =
|f ′′i (aT

i x)|‖ai‖2
2∑n

j=1 |f ′′j (aT
j x)|‖aj‖2

2
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Second-order methods: Stochastic Newton-Type Methods

Lemma (Complexity of Non-Uniform Sampling)

Suppose ‖∇2fi (x)‖ ≤ Ki , i = 1, 2, . . . , n. Given any 0 < ε < 1, 0 < δ < 1,
and x ∈ Rd , if

|S| ≥ 16K̄ 2

ε2
log

2d

δ
,

then for H(x) = 1
|S|
∑

j∈S
1
npj
∇2fj(x), we have

Pr
(
‖H(x)−∇2F (x)‖ ≤ ε

)
≥ 1− δ,

where

K̄ =
1

n

n∑
i=1

Ki .
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Second-order methods: Stochastic Newton-Type Methods

Non-Convex Problems

Algorithm 6 Stochastic Trust-Region Algorithm

1: Input: x0, ∆0 > 0 η ∈ (0, 1), γ > 1, 0 < ε, εg , εH < 1
2: for k = 0, 1, 2, · · · until termination do
3:

sk ≈ arg min
‖s‖≤∆k

mk(s) := ∇F (x
(k)
k )T s +

1

2
sTH(x(k))s

4: ρk :=
(
F (x(k) + sk)− F (x(k))

)
/mk(sk).

5: if ρk ≥ η then
6: x(k+1) = x(k) + sk and ∆k+1 = γ∆k

7: else
8: x(k+1) = x(k+1) and ∆k+1 = γ−1∆k

9: end if
10: end for
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Second-order methods: Stochastic Newton-Type Methods

Theorem (Complexity of Stochastic TR)

If ε ∈ O(εH), then Stochastic TR terminates after

T ∈ O
(
max{ε−2

g ε−1
H , ε−3

H }
)
,

iterations, upon which, with high probability, we have that

‖∇F (x)‖ ≤ εg , and λmin(∇2F (x)) ≥ − (ε+ εH) .

This is tight!
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Second-order methods: Stochastic Newton-Type Methods

Non-Convex Problems

Algorithm 7 Stochastic Adaptive Regularization with Cubic Algorithm

1: Input: x0, ∆0 > 0 η ∈ (0, 1), γ > 1, 0 < ε, εg , εH < 1
2: for k = 0, 1, 2, · · · until termination do
3:

sk ≈ arg min
s∈Rd

mk(s) := ∇F (x
(k)
k )T s +

1

2
sTH(x(k))s +

δk
3
‖s‖3

4: ρk :=
(
F (x(k) + sk)− F (x(k))

)
/mk(sk).

5: if ρk ≥ η then
6: x(k+1) = x(k) + sk and σk+1 = γ−1∆k

7: else
8: x(k+1) = x(k+1) and σk+1 = γ∆k

9: end if
10: end for

Michael W. Mahoney (UC Berkeley) Second order machine learning 86 / 96



Second-order methods: Stochastic Newton-Type Methods

Theorem (Complexity of Stochastic ARC)

If ε ∈ O(εg , εH), then Stochastic TR terminates after

T ∈ O
(

max{ε−3/2
g , ε−3

H }
)
,

iterations, upon which, with high probability, we have that

‖∇F (x)‖ ≤ εg , and λmin(∇2F (x)) ≥ − (ε+ εH) .

This is tight!
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Second-order methods: Stochastic Newton-Type Methods

For ε2
H = εg = ε = ε0

Stochastic TR: T ∈ O(ε−3
0 )

Stochastic ARC: T ∈ O(ε
−3/2
0 )
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Second-order methods: Stochastic Newton-Type Methods

Non-Linear Least Squares

min
x∈Rd

1

n

n∑
i=1

(
bi − Φ(aT

i xi )
)2
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Second-order methods: Stochastic Newton-Type Methods

Non-Linear Least Squares: Synthetic,
n = 1000, 000, d = 1000, s = 1%

(a) Train Loss vs. Time (b) Train Loss vs. Time
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Second-order methods: Stochastic Newton-Type Methods

“Preliminary results” (1 of 5)

resiliency to problem ill-conditioning
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Second-order methods: Stochastic Newton-Type Methods

“Preliminary results” (2 of 5)

good generalization error and robustness to hyper-parameter tuning
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Second-order methods: Stochastic Newton-Type Methods

“Preliminary results” (3 of 5)

ability to escape undesirable saddle-points
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Second-order methods: Stochastic Newton-Type Methods

“Preliminary results” (4 of 5)

low-communication costs in distributed settings

� = 10�3, q = 8 � = 10�4, q = 26 � = 10�5, q = 72

Figure 5: rfmw8a

h

6
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Second-order methods: Stochastic Newton-Type Methods

“Preliminary results” (5 of 5)

computational advantages offered by leveraging the power of GPUs
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Conclusion

Conclusions: Second order machine learning

Second order methods

A simple way to go beyond first order methods
Obviously, don’t be näıve about the details

FLAG n’ FLARE

Combine acceleration and adaptivity to get best of both worlds

Can aggressively sub-sample gradient and/or Hessian

Improve running time at each step
Maintain strong second-order convergence

Apply to non-convex problems

Trust region methods and cubic regularization methods
Converge to second order stationary point
Quite promising “preliminary results” in ML/DA applications
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