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) Matrix computations

Eigendecompositions, QR, SVD, least-squares, etc.

Traditional algorithms:
« compute “exact” answers Yo, say, 10 digits as a black box

* assume the matrix is in RAM and minimize flops

But they are NOT well-suited for:
* with missing or noisy entries
* problems that are very large
« distributed or parallel computation
« when communication is a bottleneck

« when the data must be accessed via "passes”



) Why randomized matrix algorithms?

* Faster algorithms: worst-case theory and/or numerical code

« Simpler algorithms: easier to analyze and reason about

* More-interpretable output: useful if analyst time is expensive

« Implicit regularization properties: and more robust output

* Exploit modern computer architectures: by reorganizing steps of alg

* Massive data: matrices that they can be stored only in slow
secondary memory devices or even not at all

Today, focus on low-rank matrix approximation and least-
squares approximation: ubiquitous, fundamental, and at the
center of recent developments



) The general idea ...

* Randomly sample columns/rows/entries of the matrix, with
carefully-constructed importance sampling probabilities, to
form a randomized sketch

* Preprocess the matrix with random projections, to form a
randomized sketch by sampling columns/rows uniformly

* Use the sketch to compute an approximate solution to the
original problem w.h.p.

* Resulting sketches are "similar” to the original matrix in
terms of singular value and singular vector structure, e.qg.,
w.h.p. are bounded distance from the original matrix



) The devil is in the details ...

Decouple the randomization from the linear algebra:

« originally within the analysis, then made explicit

* permits much finer control in application of randomization

Importance of statistical leverage scores:
* historically used in regression diagnostics to identify outliers

* best random sampling algorithms use them as importance sampling
distribution

* best random projection algorithms go to a random basis where they
are roughly uniform

Couple with domain expertise—to get best results!



] History of NLA

< 1940s: Prehistory

* Close connections to data analysis, noise, statistics, randomization
1950s: Computers

* Banish randomness & downgrade data (except scientific computing)
1980s: NLA comes of age - high-quality codes

* QR, SVD, spectral graph partitioning, etc. (written for HPC)
1990s: Lots of new DATA

« LST, PageRank, NCuts, etc., etc., etc. used in ML and Data Analysis

2000s: New data problems force new approaches ...



l History of Randomized Matrix Algs

Theoretical or'igins_\' " Practical applications

* NLA, ML, statistics, data
analysis, genetics, etfc

* theoretical computer
science, convex analysis, efc.

« Johnson-Lindenstrauss e Fast JL transform

 Additive-error algs * Relative-error algs

* Good worst-case analysis * Numerically-stable algs
* No statistical analysis__~ ¢ - _Good statistical properties

How to "bridge the gap"?
» decouple randomization from linear algebra

* importance of statistical leverage scores!



) Statistical leverage, coherence, efc.

Definition: Given a “tall” n x d matrix A, i.e., withn>d, let U
be the n x d matrix of left singular vectors, and let the d-
vector U be the i row of U. Then:

* the statistical leverage scores are A, = [|Uyl|,2 , forie{1,..n}

peee

* the (i,j)-cross-leverage scores are Uy" Uy = <Ugy Uy

Note: There are extension of this to:
« "fat” matrices A, with n, d are large and low-rank parameter k

* L1 and other p-norms



) Algorithmic vs. Statistical Perspectives

Lambert (2000)

Computer Scientists

* Data: are a record of everything that happened.

* Goal: process the data to find interesting patterns and associations.
* Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists)

* Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

* Goal. is to extract information about the world from noisy data.

* Methodology. Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.



Human genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where twq alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
/._..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGG'I'I'AGCTCGCGCGATCTCTAGCTAGGGGTGAAG$
...GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACTAAGGGGCCGGAAGGAACCAACCAAGGTTAAITTIGGGGGGTTITTCCGGTT GG GG TT GG AA ...
...GGTTTTGGTTCCCCCCCCGGAAAGAGAAAGCTAAGGGGCCAGAGCGACCCAACCAAGGTTAGICTICGCGCG|ATICTCTAGCTAGGGGTGAAG ...
..GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTTAGICTICGCGCGIATICTCT AGCT AGGT GT GAAG ...
..GGTTTTGGTTCCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGGTTGEHCOCCGCGCEATICTCTAGCTAGGGTT GG AA ...

...GGTTTTGGTTCCCCCGCCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAGICTICGCGCG|ATICTCTAGCTAGGGTT GG AA ...
&.GG'I'I"I'I'GGTI'CCCCCCCCGGAAAGAGAGAA'I'I'AAGGGGCCAGAGCGAACCAACGAAGG'I'I'AAEGGGGGG'I'I"I'I'CCGG'I'I'GGGTTI'GGAA_y

individuals

Matrices including thousands of individuals and hundreds of thousands if SNPs are available.



HGDP data
-+ 1,033 samples
* 7 geographic regions

+ 52 populations

The Human Genome Diversity Panel (HGDP)

Africans Europeans Western Asians Eastern Asians Oceanians

S Vandenka P 17 Pom
3 Yoruba 18 Palestinian
4 San 11 Basque
S Mbuti pygmy 12 French 32 Hezhen , .
6 Biaka 13 North ltalian Central and 33 Lahu Native Americans
7 Mozabite 14 Sardinian Southern Asians 34 Miao
15 Tuscan 19 Balochi 35 Orogen
20 Brahui g? _Srh__e 51 Maya
0 21 Makrani ujia X
Cavalli-Sforza (2005) Nat Genet Rev 29 Sindhi 38 Tu 52 Pima
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Li et al. (2008) Science 25 Hazara 41 Mongola
26 Uygur 42 Naxi
27 Kalash 43 Cambodian
44 Japanese
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HapMap Phase 3
The Human Genome Diversity Panel (HGDP)

Africans Europeans
3 Yoruba
4 San 11 Basque
5 Mbuti pygmy 12 French
6 Biaka 13 North Italian
7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

o

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians Oceanians
46 Melanesian
ai
31 Daur
gg men Native Americans
35
16 She . olombian
37 Tuii 51 Maya
BT 52 Pima
39 Xibo
40 Yi
41 Mongola
42 Naxi
43 Cambaodian
44 Japanese

45 Yakut

HGDP data
+ 1,033 samples
* 7 geographic regions

+ 52 populations

HapMap Phase 3 data

+ 1,207 samples

+ 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)
447 143 SNPs (columns)

Dense matrix:

over one billion entries



) The Singular Value Decomposition (SVD)

The formal definition:

Given any m x n matrix A, one can decompose it as:

p: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

2. diagonal matrix containing o; = 0, = ... = 0, the singular values of A.

SVD is the "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*
*Dianne O'Leary, MMDS 2006



) Rank-k approximations (A,)

Truncate the SVD at the top-k terms: Keep the “most
/impor‘ran‘r" k-dim
subspace.
A = Uy, ( > )( 74 )

Uy (V}): orthogonal matrix containing the top k left (right) singular vectors of A.

=, diagonal matrix containing the top k singular values of A.

Important: Keeping top k singular vectors provides "best" rank-k
approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

A, = argmin{ ||A-X||, ¢ : rank(X) = k }.




) Singular values, intuition
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Blue circles are m data points in a 2-D space.

The SVD of the m-by-2 matrix of the data
will return ...

V@: 1st (right) sinqular vector: direction of
maximal variance,

0;: how much of data variance is explained by
the first singular vector.

V(2): 2nd (right) singular vector: direction of
maximal variance, after removing projection
of the data along first singular vector.

0,: measures how much of the data variance
is explained by the second singular vector.



Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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* Top two Principal Components (PCs or eigenSNPs)

(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the "out-of-Africa” hypothesis.

* Mexican population seems out of place: we move to the top three PCs.
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EigenSNP 3

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and - of course - can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.



Issues with eigen-analysis

- Computing large SVDs: computational time
* In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the

computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 20 minutes.

+ Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.)
1,200-by-450,000 (roughly, a full leave-one-out cross-validation experiment).

(e.g., Drineas, Lewis, & Paschou (2010) PLoS ONE)
+ Selecting actual columns that “capture the structure” of the top PCs
+ Combinatorial optimization problem; hard even for small matrices.
- Often called the Column Subset Selection Problem (CSSP).
* Not clear that such "good" columns even exist.

- Avoid "reification” problem of “interpreting” singular vectors!



) SVD decomposes a matrix as...

T
( ) ( ) The SVD has very strong
optimality properties., e.g.
m X n m X p pXp pXMn the matrix U, is the "best”
/4 in many ways.

Top k left singular vectors

> Note that, given U, the best X = U,TA = =VT,
> SVD can be computed fairly quickly.

> The columns of U, are linear combinations of up to all columns of A.



) CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

Carefully

chosen X
A ~ C X
Goal: choose actual columns C to make
(some norm) of A-CX small.

f

¢ columns of A

Why?

If Ais an subject-SNP matrix, then selecting representative columns is
equivalent to selecting representative SNPs to capture the same structure
as the top eigenSNPs.

Note: To make C small, we want ¢ as small as possiblel



) CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

Easy to see optimal X = C*A.

A ~| C© ( X Hard to find good columns (e.g., SNPs)
of A to include in C.

This Column Subset Selection Problem
7‘ (CSSP), heavily studied in NI LA, is a
c columns of A . .
hard combinatorial problem.

Two issues are connected

* There exist "good" columns in any matrix that contain information about the
top principal components.

* We can identify such columns via a simple statistic: the leverage scores.

* This does not immediately imply faster algorithms for the SVD, but, combined
with random projections, it does!

* Analysis (almost!) boils down to understanding least-squares approximation ...



) Least Squares (LS) Approximation
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We are interested in over-constrained Lp regression problems, n »>> d.

Typically, there is no x such that Ax = b.

Want to find the “"best" x such that Ax = b.

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



) Exact solution to LS Approximation

Cholesky Decomposition: 29

If A is full rank and well-conditioned,
decompose ATA = R'R, where R is upper triangular, and

solve the normal equations: RTRx=ATb.

QR Decomposition:
Slower but numerically stable, esp. if A is rank-deficient.

Write A=QR, and solve Rx = Qb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.

Write A=UZVT, in which case: xgpr = A*b = VE-1,UTb.

Complexity is O(nd?) for all of these, but
constant factors differ.

min ||b — Azx||»

10— Az|[2

Projection of bon
the subspace spanned
by the columns of A

[B1]2 = [[AATD]]3

Pseudoinverse



) Modeling with Least Squares

Assumptions underlying its use:
* Relationship between "outcomes” and "predictors is (roughly) linear.
* The error term ¢ has mean zero.
« The error term ¢ has constant variance.
 The errors are uncorrelated.

* The errors are normally distributed (or we have adequate sample size to
rely on large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!



) Statistical Issues and Regression Diaghostics

Model: b = Ax+e

Xopt = (ATAY1ATH
b'= Hb

e = b-b' = (I-H)b

Trace(H)=d
H=UUT
H;i = [UD],2

b = response; A®) = carriers;

e = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0
and Var(e)=0°I), uncorrelated, normally distributed

(what we computed before)

H= A(ATA)1AT = "hat" matrix

H;; - measures the leverage or influence exerted on b’; by b;,
regardless of the value of b; (since H depends only on A)

vector of residuals - note: E(e')=0, Var(e')=02(I-H)

Diagnostic Rule of Thumb: Investigate if H;; > 2d/n
U is from SVD (A=UZVT), or any orthogonal matrix for span(A)

leverage scores = row “lengths” of spanning orthogonal matrix



Hat Matrix and Regression Diagnostics

See: "The Hat Matrix in Regression and ANOVA," Hoaglin and Welsch (1978)
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Examples of things to note:

* Point 4 is a bivariate outlier - and H,, is largest, just exceeds 2p/n=6/10.

* Points 1 and 3 have relatively high leverage - extremes in the scatter of points.
* H, 4 is moderately negative - opposite sides of the data band.

* H, g and H; ;o moderately positive - those points mutually reinforce.

* Hy is fairly low - point 6 is in central position.



) A "classic” randomized algorithm (lof3)

Over-constrained least squares (nh x d matrix A,n >>d)

e Solve: 2 = min ||[Ax — b||2
xe R4

* Solution: x,,; = A'h

Randomized Algorithm: 1
*Forallie{l,..,n} compute Pi = EHU@)H%

« Randomly sample O(d log(d)/ ¢) rows/elements fro A/b, using
{p;} as importance sampling probabilities.

* Solve the induced subproblem: Topt = (SA)TSEJ



) A "classic" randomized algorithm (20f3)

Theorem: Let 7 = ||UAU£b||2/”b||2 . Then:
* ||AZop —bl[2 < (1 +€)Z
o @op = Fopilla < Ve (KA = 1) [l |2

This naive algorithm runs in O(nd?) time
* But it can be improved Il

This algorithm is bottleneck for Low Rank Matrix Approximation
and many other matrix problems.



) A "classic” randomized algorithm (30f3)

Sufficient condition for relative-error approximation.

For the “preprocessing" matrix X:

o2 (XUy) > 1/v/2; and
UAXTXbH||5 < e2?/2,

« Important: this condition decouples the randomness from the
linear algebra.

* Random sampling algorithms with leverage score probabilities
and random projections satisfy it!



) Random projections: the JL lemma

For every set S of m points in R"™ and every € > 0, there exists a mapping
f:R" — R* where s = O (log m/ 62), such that for all points u € S,

(1 =€) flully < 7 ()l < (T 4€) [Jully

holds with probability at least 1 — 1 /m?.

Johnson & Lindenstrauss (1984)
- We can represent S by an m-by-n matrix A, whose rows correspond to points.
- We can represent all f(u) by an m-by-s A.
* The "mapping” corresponds to the construction of an n-by-s matrix Q and computing

A=AQ



] Different constructions for Q matrix

"Slow” Random Projections (=O(nd?) time to implement in RAM model):
- JL (1984): random k-dimensional space

* Frankl & Maehara (1988): random orthogonal matrix

* DasGupta & Gupta (1999): random matrix with entries from N(0,1), normalized

* Indyk & Motwani (1998): random matrix with entries from N(O,1), normalized

* Achlioptas (2003): random matrix with entries in {-1,0,+1}, normalized

* Alon (2003): optimal dependency on n, and almost optimal dependency on ¢

"Fast” Random Projections (o(nd?) time to implement in RAM model):
* Ailon and Chazelle (2006,2009); Matousek (2008); and many variants more recently.



Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

) Fast Johnson-Lindenstrauss Transform

P c R +1 ,w.p. q/2
s = O (logm/e?) PU — \/a X 0 Ww.p. 1-q
q = O (10g2 frn/) _1 ;.\V'.I). (1/2
XN
HeR"" Normalized Hadamard-Walsh transform matrix
(if nis not a power of 2, add all-zero columns to A; or use other
related Hadamard-based methods)
nxn
DeR Diagonal matrix with D;; set to +1 or -1 w.p. 1/2.
v -
R=(PHD) e RS —— A= -—AR

g

* P can also be a matrix representing the "uniform sampling” operation.

* In both cases, the O(n log (n)) running time is computational bottleneck.



) Randomized Hadamard preprocessing

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

Let H, be an n-by-n deterministic Hadamard matrix, and
Let D, be an n-by-n random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

Fact 1: Multiplication by H,D, doesn't change the solution:
|Ax — b||2 = ||H,,D,,Ax — H,,D,b||2 = ||[HAx — Hb||,

(since H, and D, are orthogonal matrices).

Fact 2: Multiplication by H,D, is fast - only O(n log(r)) time, where r is the number of
elements of the output vector we need to "touch”.

Fact 3: Multiplication by H,D, approximately uniformizes all leverage scores:

dlogn
U(iyp 4ll2 = [[(HUA) ||2 < O ( )

n



) Theoretically "fast" algorithms

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Algorithm 1: Fast Random Projection Algorithm for LS Problem

* Preprocess input (in o(nd?)time) with Fast-JL transform, uniformizes
leverage scores, and sample uniformly in the randomly-rotated space

* Solve the induced subproblem

Algorithm 2: Fast Random Sampling Algorithm for LS Problem

« Compute 1+¢ approximation to statistical leverage scores (in
o(nd?)time), and use them as importance sampling probabilities

* Solve the induced subproblem
Main theorem: For both of these randomized algorithms, we get:

* (1x¢)-approximation

- in roughly O (ndlog (dlog(n)/€) + d*log(n)log(dlogn)/e) timell



. Fast approximation of statistical
) leverage and matrix coherence (1 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Simple (deterministic) algorithm:
« Compute a basis Q for the left singular subspace, with QR or SVD.

« Compute the Euclidean norms of the rows of Q.
Running time is O(nd?), if n >> d, O(on-basis) time otherwise.

We want faster!
« o(nd?) or o(on-basis), with no assumptions on input matrix A.
* Faster in terms of flops of clock time for not-obscenely-large input.

« OK to live with e-error or to fail with overwhelmingly-small § probability



. Fast approximation of statistical
) leverage and matrix coherence (2 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

View the computation of leverage scores i.t.o an
under-constrained LS problem

Recall (Aisnxd, n» d):

. min |[zTA - e Al — a2l =eAAT

ij RT'L
But:

o pi = |leiUall3 = [|e;UaUZI3 = lle; AAT|[3

Leverage scores are the norm of a min-length solution
of an under-constrained LS problem!



. Fast approximation of statistical

) leverage and matrix coherence (3 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

pPi =
~

o
e

(AAT) ()]
(A(2:4)

2
2

)(@H% where €27 is a fast SRHT

(A, 4)

'Q2)(1||5  where s is Rand Proj

* This is simpler than for the full under-constrained LS solution since only
need the norm of the solution.

* This is essentially using R"! from QR of subproblem as preconditioner for
original problem.

«Te,h Q; Aisarandomized "skefch” of A; QR = Q; A is QR decomposition
of this sketch; and evaluate row norms of X& A R-1,, but need Q,, a second
projection, fo make it “fast."



Fast approximation of statistical
leverage and matrix coherence (4 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Theorem: Given an n x d matrix A, with n>> d, let P, be the
projection matrix onto the column space of A. Then, there isa
randomized algorithm that w.p. > 0.999:

 computes all of the n diagonal elements of P, (i.e., leverage
scores) to within relative (1+¢) error;

« computes all the large of f-diagonal elements of P, to within
additive error;

* runs in o(nd?)* time.

*Running time is basically O(n d log(n)/¢), i.e., same as DMMS
fast randomized algorithm for over-constrained least squares.



) Practically "fast" implementations

Use "randomized sketch” to construct preconditioner
for traditional iterative methods:

« RTO8: preconditioned iterative method improves 1/¢
dependence to log(1/¢), important for high precision

« AMT10: much more detailed evaluation, different Hadamard-
type preconditioners, etc.

« CRT11: use Gaussian projections to compute orthogonal
projections with normal equations

« MSM11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.g., for parallel
computation in Amazon EC2 clusters!



Meng, Saunders, and Mahoney (2011, arXiv)

:. LSRN: a fast parallel implementation (1 of 4)

A parallel iterative solver based on normal random
projections

» computes unique min-length solution to min, ||Ax-b||,
* very over-constrained or very under-constrained A

* full-rank or rank-deficient A

* A can be dense, sparse, or a linear operator

* easy to implement using threads or with MPI, and scales well
in parallel environments



LSRN: a fast parallel implementation (2 of 4)

Meng, Saunders, and Mahoney (2011, arXiv)

Algorithm:
* Generate a yn X m matrix with i.i.d. Gaussian entries G
*Let Nbe R1or V =!from QR or SVD of GA

* Use LSQR or Chebyshev Semi-Iterative (CSI) method to
solve the preconditioned problem min, ||ANy-b||,

Things to note:
« Normal random projection: embarassingly parallel
* Bound «(A): strong control on number of iterations

* CSI particularly good for parallel environments: doesn't have
vector inner products that need synchronization b/w nodes



LSRN: a fast parallel implementation (3 of 4)

Meng, Saunders, and Mahoney (2011, arXiv)
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LSRN: a fast parallel implementation (4 of 4)

Meng, Saunders, and Mahoney (2011, arXiv)

TapLE 6.3
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l Low-rank approximation algorithms

Many randomized algorithms for low-rank matrix
approximation use extensions of these basic least-
squares ideas:

* Relative-error random sampling CX/CUR algorithms (DMMO7)
* Relative-error random projection algorithms (S08)
* Column subset selection problem (exactly k columns) (BMDO9)

* Numerical implementations, with connections to interpolative
decomposition (LWMRTO7 WLRTO8 MRT11)

* Numerical implementations for slower spectral decay (RSTO9)



Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)
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SNPs by chromosomal order

Paschou et al (2007; 2008) PLoS Genetics
Paschou et al (2010) J Med Genet
Drineas et al (2010) PLoS One

Javed et al (2011) Annals Hum Genet



) An interesting observation

Sampling w.r.t. to leverage scores results in redundant columns being selected.

(Almost) identical columns have (almost) the same leverage scores and thus might be all selected, even
though they do not really add new “information.”

First Solution:

Apply a "redundancy removal” step, e.g., a deterministic CSSP algorithm on the sampled columns.

Very good empirically, even with "ndive"” CSSP algorithms (such as the pivoted QR factorization).

Conjecture:

The "leverage scores” filter out relevant columns, so deterministic methods do a better job later.

Paschou et al. (2007,2008) for population genetics applications; and Boutsidis et al. (2009, 2010) for theory.

Second Solution:

Apply clustering to the sampled columns and then return a representative column from each cluster.

Very good empirically, since it permits clustering of SNPs that have similar functionalities and thus allows
better understanding of the proposed ancestry-informative panels.



Statistical Leverage and DNA Microarray data

Mahoney and Drineas, PNAS (2009)
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) Statistical Leverage and Large Internet Data

"Cumulative leverage" far terms in "Enron kAatri="
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:. Future directions?

Lots of them:

 Other traditional NLA and large-scale optimization problems
* Parallel and distributed computational environments

* Sparse graphs, sparse matrices, and sparse projections

* Laplacian matrices and large informatics graphs

 Randomized algorithms and implicit reqularization

“New data and new problems are forcing us to reconsider the
algorithmic and statistical basis of large-scale data analysis.”



:. For more info ...

Two very good recent reviews:

» "Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions,” by N.
Halko, P. 6. Martinsson, J. Tropp, STAM Review, 53(2), 2011.
(Also available at arXiv:0909.4061).

» "Randomized Algorithms for Matrices and Data,” M. W.
Mahoney, In pressin NOW Publishers’ Foundations and
Trends in Machine Learning series. (Also available at

arXiv:1104.5557).

And no doubt more to come ...



