Fast Monte Carlo Algorithms for Matrices

Michael W. Mahoney

Department of Mathematics
Yale University
michael.mahoney@yale.edu
http://www.cs.yale.edu/homes/mmahoney

Joint work with:
Petros Drineas and Ravi Kannan

For more information, see the papers at: http://www.cs.yale.edu/homes/mmahoney/matrix

Goal: To develop and analyze fast Monte Carlo algorithms for performing useful computations on large matrices.

- Matrix Multiplication
- Computation of the Singular Value Decomposition
- ullet Computation of the CUR Decomposition
- Testing Feasibility of Linear Programs

Such matrix computations generally require time which is *superlinear* in the number of nonzero elements of the matrix, e.g., n^3 in practice.

These and related algorithms useful in applications where data sets are modeled by matrices and are extremely large.

Applications of these Algorithms

Matrices arise, e.g., since n objects (documents, genomes, images, web pages), each with m features, may be represented by a matrix $A \in \mathbb{R}^{m \times n}$.

- Covariance Matrices
- Latent Semantic Indexing
- DNA Microarray Data
- Eigenfaces and Image Recognition
- Similarity Query
- Matrix Reconstruction
- Numerous Linear Programming Applications
- ullet Design of Approximation Algorithms for Classical CS NP-hard Optimization Problems

Linear Algebra Review

For $A \in \mathbb{R}^{m \times n}$ let $A^{(j)}$, $j=1,\ldots,n$, denote the j-th column of A and $A_{(i)}$, $i=1,\ldots,m$, denote the i-th row of A.

$$\begin{aligned} \|A\|_{2} &= \sup_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{|Ax|}{|x|} \\ \|A\|_{F} &= \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2} = \left(\operatorname{Tr}\left(A^{T}A\right)\right)^{1/2} \\ \|A\|_{2} &\leq \|A\|_{F} \leq \sqrt{n} \|A\|_{2} \end{aligned}$$

Theorem. [SVD] If $A \in \mathbb{R}^{m \times n}$, then there exist orthogonal matrices U and V and a matrix $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\rho})$, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\rho} \geq 0$, such that

$$A = U\Sigma V^T = U_r \Sigma_r V_r^T = \sum_{t=1}^r \sigma_t u^t v^{t^T}.$$

 $U=[u^1u^2\dots u^m]$, $V=[v^1v^2\dots v^n]$, and Σ constitute the Singular Value Decomposition (SVD) of A.

- σ_i are the singular values of A
- ullet u^i , v^i are the i-th left and the i-th right singular vectors

Linear Algebra Review, Cont.

Recall that:

$$\bullet \begin{cases}
Av^i = \sigma_i u^i \\
A^T u^i = \sigma_i v^i
\end{cases}$$

Theorem. Let $A_k = U_k \Sigma_k V_k^T = \sum_{t=1}^k \sigma_t u^t v^{t^T}$:

•
$$A_k = U_k U_k^T A = \left(\sum_{t=1}^k u^t u^{t^T}\right) A$$

•
$$A_k = AV_kV_k^T = A\left(\sum_{t=1}^k v^t v^{t^T}\right)$$

•
$$||A - A_k||_2 = \min_{D \in \mathbb{R}^{m \times n}: rank(D) \le k} ||A - D||_2$$

•
$$||A - A_k||_F^2 = \min_{D \in \mathbb{R}^{m \times n} : rank(D) \le k} ||A - D||_F^2$$

•
$$\max_{t:1 \le t \le n} |\sigma_t(A+E) - \sigma_t(A)| \le ||E||_2$$

•
$$\sum_{k=1}^{n} (\sigma_k(A+E) - \sigma_k(A))^2 \le ||E||_F^2$$

Overview and Summary

- Pass-Efficient Model and Random Sampling
- Matrix Multiplication
- Singular Value Decomposition
- ullet CUR Decomposition
- Lower Bounds
- Testing Feasibility of Linear Programs
- Approximating Max-Cut and Max-2-CSP Problems

Computation on Massive Data Sets

Data are too large to fit into main memory; they are either not stored or are stored in external memory.

Algorithms that compute on data streams examine the stream, keep a small "sketch" of the data, and perform computations on the sketch.

Algorithms are randomized and approximate.

Performance is evaluated by measures such as:

- the time to process an item
- the number of passes over the data
- the additional workspace and time
- the quality of the approximation returned

MP78: studied "the relation between the amount of internal storage available and the number of passes required to select the K-th highest of N inputs."

The Pass-Efficient Model

Amount of *disk space* has increased enormously; *RAM* and *computing speeds* have increased less rapidly.

We can *store* large amounts of data but we **cannot** *process* these data with traditional algorithms.

In the Pass-Efficient Model:

- Data are assumed to be stored on disk.
- The only access the algorithm has to the data is with a pass, where a pass is a sequential read of the entire input from disk where only a constant amount of processing time is permitted per bit read.
- An algorithm is allowed additional RAM space and additional computation time.

An algorithm is *pass-efficient* if it requires a small constant number of passes and sublinear additional time and space to compute a *description* of the solution.

If data are $A \in \mathbb{R}^{m \times n}$, then algorithms which require additional time and space that is O(m+n) or O(1) are pass-efficient.

Random Sampling

Typically, random sampling is used to estimate some parameter defined over a large set by looking at only a very small subset.

Uniform Sampling: every piece of data is equally likely to be picked.

Advantages

- "Coins" can be tossed "blindly."
- Even if the number of data elements is not known in advance, can select one element u.a.r. in one pass over the data.
- Much recent work on quantities that may be approximated with a small uniformly drawn sample.

Disadvantages

- Many quantities cannot be approximated well with a small random sample that is uniformly drawn.
- E.g., compute the average of n numbers, where there is a lot of cancellation.

Random Sampling, Cont.

Nonuniform Sampling:

Advantages

- Can obtain much more generality and big gains, e.g., can approximately solve problems in sparse as well as dense matrices.
- Smaller sampling complexity for similar bounds.

Disadvantages

 Must determine the nonuniform probabilities; multiple passes over the data usually needed.

Main conclusion of the work: A "sketch" consisting of a small number of judiciously chosen and randomly sampled rows and columns is sufficient for provably rapid and efficient approximation of a variety of common matrix operations.

Sampling Lemmas

Select Algorithm

Input: $\{a_1, \ldots, a_n\}$, $a_i \ge 0$, read in one pass, i.e., one sequential read, over the data.

Output: i^*, a_{i^*} .

- D = 0.
- For i = 1 to n,
 - $D = D + a_i$
 - With probability a_i/D , let $i^*=i$ and $a_{i^*}=a_i$.
- Return i^*, a_{i^*} .

Lemma. [DKM] Suppose that $\{a_1, \ldots, a_n\}$, $a_i \geq 0$, are read in one pass. Then the SELECT algorithm requires O(1) additional storage space and returns i^* such that $\Pr[i^* = i] = a_i / \sum_{i'=1}^n a_{i'}$.

The sparse-unordered representation of data is a form of data representation in which each element of the data stream consists of a pair $((i,j),A_{ij})$, where the elements in the data stream may be unordered with respect to the indices (i,j) and only the nonzero elements of the matrix A need to be presented.

Approximating Matrix Multiplication

For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, AB may be written as the sum of n rank-one matrices:

$$AB = \sum_{t=1}^{n} A^{(t)} B_{(t)}.$$

$$\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} = \sum_{t=1}^{n} \begin{pmatrix} & \\ & \\ & A^{(t)} \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}.$$

BasicMatrixMultiplication (BMMA) Algorithm Summary.

- Given $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $c \in \mathbb{Z}^+$, and $\{p_i\}_{i=1}^n$.
- ullet Randomly sample c columns of A according to $\{p_i\}_{i=1}^n$ and rescale each column by $1/\sqrt{cp_{i_t}}$ to form $C\in\mathbb{R}^{m imes c}$.
- Sample the corresponding c rows of B and rescale each row by $1/\sqrt{cp_{i_t}}$ to form $R \in \mathbb{R}^{c \times p}$.
- Return P = CR.

$$P = CR = \sum_{t=1}^{c} C^{(t)} R_{(t)} = \sum_{t=1}^{c} \frac{1}{cp_{i_t}} A^{(i_t)} B_{(i_t)}$$

BASICMATRIXMULTIPLICATION Algorithm

Input: $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $c \in \mathbb{Z}^+$ s.t. $1 \leq c \leq n$, and $\{p_i\}_{i=1}^n$ s.t. $p_i \geq 0$ and $\sum_{i=1}^n p_i = 1$.

Output: $P \in \mathbb{R}^{m \times p}$.

- For t = 1 to c,
 - Pick $i_t \in \{1,\ldots,n\}$ with $\Pr[i_t=k]=p_k$, $k=1,\ldots,n$, independently and with replacement.
 - independently and with replacement. – Set $C^{(t)}=A^{(i_t)}/\sqrt{cp_{i_t}}$ and $R_{(t)}=B_{(i_t)}/\sqrt{cp_{i_t}}$.
- Return P = CR.

Define the sampling matrix $S \in \mathbb{R}^{n \times c}$ as:

$$S_{ij} = \begin{cases} 1 & \text{if the } i\text{-th column of } A \text{ (and } i\text{-th row of } B) \\ & \text{is chosen in the } j\text{-th trial} \\ 0 & \text{otherwise} \end{cases}$$

Define the rescaling matrix $D \in \mathbb{R}^{c \times c}$ as:

$$D_{tt'} = \begin{cases} 1/\sqrt{cp_{i_t}} & \text{if } t = t' \\ 0 & \text{otherwise} \end{cases}$$

Then
$$C = ASD$$
 and $R = (SD)^TB$ so that

$$P = CR = ASD(SD)^{T}B = \tilde{A}\tilde{B} \approx AB.$$

Advantages of the BMMA

- Conceptually simple and easily implementable.
- Algorithm and preprocessing do not need to be modified in the presence of negative entries.
- Nice interpretation if if A or B are low rank (or well approximated by low-rank matrices).
- Randomization is used only in the preprocessing step.
- Memory requirements are relatively small.
- Can use any algorithm for the smaller matrix multiplication.
- Does not tamper with the sparsity structure of the matrices.

Implementation of the BMMA

- Recall, $A: \mathbb{R}^n \to \mathbb{R}^m$ and $B: \mathbb{R}^p \to \mathbb{R}^n$.
- \bullet Uniform sampling: O(1) space and time to sample and O(m+p) space and time to construct C and R
- Nonuniform sampling: for nice probabilities one pass and O(n) (or O(1) if $B=A^T$) space and time to construct probabilities and a second pass and O(m+p) space and time to construct C and R.

Def: A set of sampling probabilities $\{p_i\}_{i=1}^n$ are *nearly* optimal probabilities if \exists a positive constant $\beta \leq 1$:

$$p_k \ge \frac{\beta |A^{(k)}| |B_{(k)}|}{\sum_{k'=1}^{n} |A^{(k')}| |B_{(k')}|}$$

Note: If $\beta=1$ then $\mathbf{E}\left[\left\|AB-CR\right\|_F^2\right]$ is minimized.

Lemma. [DKM]

$$\mathbf{E} [(CR)_{ij}] = (AB)_{ij}$$

$$\mathbf{Var} [(CR)_{ij}] = \frac{1}{c} \sum_{k=1}^{n} \frac{A_{ik}^{2} B_{kj}^{2}}{p_{k}} - \frac{1}{c} (AB)_{ij}^{2}$$

$$\mathbf{E} [\|AB - CR\|_{F}^{2}] = \sum_{i=1}^{m} \sum_{j=1}^{p} \mathbf{Var} [(CR)_{ij}].$$

Theorem. [DKM] If $\{p_i\}_{i=1}^n$ are nearly optimal probabilities then

$$\mathbf{E}\left[\left\|AB - CR\right\|_{F}\right] \leq \frac{1}{\sqrt{\beta c}} \left\|A\right\|_{F} \left\|B\right\|_{F}.$$

Let $\delta \in (0,1)$ and $\eta = 1 + \sqrt{(8/\beta) \log(1/\delta)}$; then with probability at least $1 - \delta$:

$$||AB - CR||_F \le \frac{\eta}{\sqrt{\beta c}} ||A||_F ||B||_F.$$

Proof. Expectation straightforward; whp uses Doob martingales and Hoeffding-Azuma inequality.

Corollary. [DKM] If $B=A^T$ and $\{p_i\}_{i=1}^n$ are nearly optimal probabilities, i.e., $p_k\geq \frac{\beta\left|A^{(k)}\right|^2}{\|A\|_F^2}$, then

$$\mathbf{E}\left[\left\|AA^{T} - CC^{T}\right\|_{F}\right] \leq \frac{1}{\sqrt{\beta c}} \left\|A\right\|_{F}^{2}$$

and with probability at least $1 - \delta$:

$$\left\|AA^T - CC^T\right\|_F \le \frac{\eta}{\sqrt{\beta c}} \left\|A\right\|_F^2.$$

$$\left(\begin{array}{ccc} & & & \\ & & A & & \\ & & & \\ & & & \\ \end{array} \right) = \left(\begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{ccc} & & \\ & & \\ \end{array} \right)$$

Sampling with non-nearly optimal probabilities.

[t]

	$\mathbb{E}\left[\left\ AB - CR\right\ _{F}\right] \le$	w.h.p. $\ AB-CR\ _F \leq$	comments and restrictions
$p_k \ge \frac{\beta \left A^{(k)} \right \left B_{(k)} \right }{\sum_{k'} \left A^{(k')} \right \left B_{(k')} \right }$	$\frac{1}{\sqrt{eta c}} \ A\ _F \ B\ _F$	$rac{\eta}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$\eta = 1 + \sqrt{rac{8}{eta}\log\left(rac{1}{\delta} ight)}$
$p_k \ge \frac{\beta \left A^{(k)} \right ^2}{\left A \right _F^2}$	$rac{1}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$rac{\eta}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$\eta = 1 + \frac{\ A\ _F}{\ B\ _F} \mathcal{M} \sqrt{\frac{8}{\beta} \log\left(\frac{1}{\beta} \log\left(\frac{1}{\beta}\right)\right)}$ $\mathcal{M} = \max_{\alpha} \frac{B_{(\alpha)}}{ A^{(\alpha)} }$
$p_k \ge \frac{\beta \left B_{(k)} \right ^2}{\ B\ _F^2}$	$rac{1}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$rac{\eta}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$\eta = 1 + \frac{ B _F}{ A _F} \mathcal{M} \sqrt{\frac{8}{\beta}} \log \left(\frac{1}{\delta}\right)$ $\mathcal{M} = \max_{\alpha} \frac{A^{(\alpha)}}{B_{(\alpha)}}$ $\eta = 1 + \sqrt{\frac{8}{\beta}} \log \left(\frac{1}{\delta}\right)$
$p_k \ge \frac{\beta \left A^{(k)} \right }{\sum_{k'=1}^{n} \left A^{(k')} \right }$	$\frac{1}{\sqrt{eta c}} \ A\ _F \sqrt{n} \mathcal{M}$	$rac{\eta}{\sqrt{eta c}} \ A\ _F \sqrt{n} \mathcal{M}$	$\eta = 1 + \sqrt{\frac{8}{\beta} \log\left(\frac{1}{\delta}\right)}$ $\mathcal{M} = \max_{\alpha} \left B_{(\alpha)}\right $
$p_k \ge \frac{\beta \left B_{(k)} \right }{\sum_{k'=1}^n \left B_{(k')} \right }$	$rac{1}{\sqrt{eta c}}\sqrt{n}\mathcal{M}\ B\ _F$	$rac{\eta}{\sqrt{eta c}}\sqrt{n}\mathcal{M}\left\ B ight\ _{F}$	$\eta = 1 + \sqrt{rac{8}{eta}\log\left(rac{1}{\delta} ight)}$ $\mathcal{M} = \max_{eta} \left A^{(lpha)} ight $
$p_k \ge \frac{\beta \left A^{(k)} \right \left B_{(k)} \right }{\left \left A \right \left F \right \left B \right \right _F}$	$rac{1}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$rac{\eta}{\sqrt{eta c}} \ A\ _F \ \ B\ _F$	$\eta = 1 + \sqrt{\frac{8}{\beta} \log\left(\frac{1}{\delta}\right)}$
$p_k = \frac{1}{n}$	See Lemma XX.	See Lemma XX.	See Lemma XX.

Element-wise Error Bounds for BMMA

Lemma. [DKM] Let M be such that $|A_{ij}| \leq M$ and $|B_{ij}| \leq M$. Construct an approximation P = CR to AB with the BasicMatrixMultiplication algorithm. If $p_k = 1/n$ then with probability greater than $1 - \delta \ \forall i, j$

$$|(AB)_{ij} - (CR)_{ij}| < \frac{nM^2}{\sqrt{c}} \sqrt{8\ln(2mp/\delta)}$$

If $\{p_k\}_{k=1}^n$ are nearly optimal probabilities then with probability greater than $1-\delta \ \forall i,j$

$$|(AB)_{ij} - (CR)_{ij}| < \frac{n\sqrt{mp}M^2}{\sqrt{\beta c}}\sqrt{(8/\beta)\ln(2mp/\delta)}$$

Note: Nearly optimal probabilities are worse by a factor of $\sqrt{mp/\beta}$ since they are nearly optimal with respect to minimizing $\mathbf{E}\left[\left\|AB-CR\right\|_F^2\right]$.

Multiplying more than two matrices

Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times q}$,

$$ABC = \sum_{s=1}^{n} \sum_{t=1}^{p} A^{(s)} B_{st} C_{(t)}.$$

First algorithm: Randomly choose c_1 times $i_s \in \{1,\ldots,n\}$ according to $\{p_i\}_{i=1}^n$ and and choose c_2 times $j_t \in \{1,\ldots,p\}$ according to $\{q_j\}_{j=1}^p$. Then form the matrices $\tilde{A} \in \mathbb{R}^{m \times c_1}$, $\tilde{B} \in \mathbb{R}^{c_1 \times c_2}$, and $\tilde{C} \in \mathbb{R}^{c_2 \times q}$ so that $\tilde{A}\tilde{B}\tilde{C} = \sum_{s=1}^{c_1} \sum_{t=1}^{c_2} \frac{A^{(i_s)}B_{i_sj_t}C_{(j_t)}}{c_1c_2p_{i_s}q_{j_t}}$.

Note: Analysis is difficult due to non-independence in sampling.

Second algorithm: Randomly choose c times $(i_s,j_t)\in\{1,\ldots,n\}\times\{1,\ldots,p\}$ according to $\{p_{kl}\}_{kl=1}^{np}$ and define

$$P = \sum_{(s,t)=1}^{c} \frac{1}{cp_{k_s l_t}} A^{(k_s)} B_{k_s l_t} C_{(l_t)}.$$

Lemma. [DKM]

$$\mathbf{E}\left[(P)_{ij}\right] = (ABC)_{ij}$$

$$\mathbf{Var}\left[(P)_{ij}\right] = \frac{1}{c} \sum_{k=1}^{n} \sum_{l=1}^{p} \frac{1}{p_{kl}} A_{ik}^{2} B_{kl}^{2} C_{lj}^{2} - \frac{1}{c} (ABC)_{ij}^{2}.$$

If

$$p_{kl} \ge \beta \frac{\left| A^{(k)} \right| \left| B_{kl} \right| \left| C_{(l)} \right|}{\sum_{k'} \sum_{l'} \left| A^{(k')} \right| \left| B_{k'l'} \right| \left| C_{(l')} \right|}$$

for some $\beta \leq 1$, then

$$\mathbf{E} \left[\|ABC - P\|_F^2 \right] \le \frac{1}{c\beta} \sum_{k} \sum_{l} |A^{(k)}| |B_{kl}| |C_{(l)}|.$$

and a similar result can be shown to hold with high probability.

Note: Difficult in general to compute optimal probabilities.

Second Matrix Multipliation Algorithm

ALTERNATE MATRIX MULTIPLICATION Algorithm

 $\begin{array}{l} \textbf{Input:} \quad A \in \mathbb{R}^{m \times n} \text{, } B \in \mathbb{R}^{n \times p} \text{, } c \in \mathbb{Z}^+ \text{ such that } 1 \leq c \leq n \text{, and } \\ \left\{p_k^{(ij)}\right\}_{i,j,k=1}^{m,p,n} \text{ such that } p_k^{(ij)} \geq 0 \text{ and } \sum_{k=1}^n p_k^{(ij)} = 1 \text{, for all } i,j. \end{array}$

Output: $P \in \mathbb{R}^{m \times p}$.

Algorithm:

- ullet For i=1 to m and j=1 to p,
 - For t = 1 to c,
 - * Pick $i_t \in \{1,\ldots,n\}$ with $\Pr\left[i_t=k\right]=p_k^{(ij)}$, $k=1,\ldots,n$, independently and with replacement.
 - $* \text{ Set } P_t^{ij} = \frac{A_{ii_t}B_{i_tj}}{cp_{i_t}^{(ij)}}.$
 - Set $P_{ij} = \sum_{t=1}^{c} P_t^{ij}$
- Return $P = (P_{ij})$.

Notes:

- Recall: $(AB)_{ij} = \sum_{t=1}^{n} A_{it} B_{tj}$.
- ullet Approximate the product AB by estimating each of its elements independently by randomly sampling from terms in this sum.
- Improved bound with respect to the spectral norm.
- ullet Cannot be implemented unless either a large number of passes are performed or both matrices A and B are stored in RAM.

Lemma. [DKM] Construct an approximation P to AB with the AlternateMatrixMultiplication algorithm. If $p_k^{(ij)}=1/n$ then

$$\mathbf{E} \left[\|AB - P\|_F^2 \right] \le \frac{n}{c} \sum_{k=1}^n |A^{(k)}|^2 |B_{(k)}|^2.$$

If
$$p_k^{(ij)} = A_{ik}^2/\left|A_{(i)}
ight|^2$$
, then

$$\mathbf{E} \left[\|AB - P\|_F^2 \right] \le \frac{1}{c} \|A\|_F^2 \|B\|_F^2.$$

Theorem. [DKM] Let $m+p \geq 24$, $M = \max_{ij} \{A_{ij}, B_{ij}\}$, and $c \leq \frac{m+p}{4\ln^6(m+p)}$. Construct an approximation P to AB with the ALTERNATEMATRIXMULTIPLICATION algorithm. Then, with probability at least 1-1/(m+p)

$$||AB - P||_2 \le \frac{10}{\sqrt{c}} nM^2 \sqrt{m+p}.$$

Proof. Makes use of concentration results of the eigenvalues of random matrices from AM03, FK81, KV00. □

Third Matrix Multipliation Algorithm

ELEMENTWISE MATRIX MULTIPLICATION Algorithm

Input: $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $\left\{p_{ij}\right\}_{i,j=1}^{m,n}$ such that $0 \leq p_{ij} \leq 1$, and $\left\{q_{ij}\right\}_{i,j=1}^{n,p}$ such that $0 \leq q_{ij} \leq 1$.

Output: $P \in \mathbb{R}^{m \times p}$.

Algorithm:

- $\bullet \ \ \mathsf{For} \ i = 1 \ \mathsf{to} \ m \ \mathsf{and} \ j = 1 \ \mathsf{to} \ n,$
 - Set

$$S_{ij} = \left\{ egin{array}{ll} A_{ij}/p_{ij} & ext{ with probability } p_{ij} \ 0 & ext{ otherwise.} \end{array}
ight.$$

- For i = 1 to n and j = 1 to p,
 - Set

$$R_{ij} = \left\{ egin{array}{ll} B_{ij}/q_{ij} & ext{with probability } q_{ij} \ 0 & ext{otherwise.} \end{array}
ight.$$

• Return P = SR.

Notes:

- Nonuniformly sample elements rather than rows and columns.
- Based on idead from AM01 and AM03.
- The algorithm does not keep "corresponding" elements.
- Implementable in two passes.
- We get an expected number of elements and so an expected running time.

Lemma. [DKM] Let $p_{ij} = \min\{1, \ell A_{ij}^2 / \|A\|_F^2\}$ and $q_{ij} = \min\{1, \ell' B_{ij}^2 / \|B\|_F^2\}$. Construct an approximation P = SR to AB with the ELEMENTWISEMATRIXMULTIPLICATION algorithm.

$$\mathbf{E} \left[\|AB - P\|_F^2 \right] \ge \frac{mpn}{\ell\ell'} \|A\|_F^2 \|B\|_F^2 - \sum_{k=1}^n |A^{(k)}|^2 |B_{(k)}|^2.$$

Theorem. [DKM] Let

$$p_{ij} = \begin{cases} & \min\{1, \ell A_{ij}^2 / \|A\|_F^2\} & \text{if } |A_{ij}| > \frac{O(1)\|A\|_F \log^3 n}{\sqrt{n\ell}} \\ & \min\{1, \frac{\sqrt{\ell}|A_{ij}| \log^3 n}{\sqrt{n}\|A\|_F}\} & \text{otherwise} \end{cases}$$

Let $\ell = \ell' \leq \|X\|_F^2 / \max_{i,j} X_{ij}^2$ for X = A, B and let m = n = p and $n \geq \log^6 n$. Construct an approximation P = SR to AB with the ElementwiseMatrixMultiplication algorithm. Then, with probability at least 1 - 1/n,

$$||AB - P||_2 \le \left(\sqrt{\frac{15^2n}{\ell}} + \frac{50n}{\ell}\right) ||A||_F ||B||_F$$

Proof. Makes use of concentration results of the eigenvalues of random matrices from AM03, which in turn is based on FK81, KV00. \Box

Summary of Matrix Multiplication

- ullet Three algorithms to compute an approximation P to the product AB.
- Provable bounds on the error matrix P-AB and run in O(mp+mn+np) time.
- For the BasicMatrixMultiplication algorithm, c=O(1) columns of A are randomly chosen and rescaled to form a matrix C, the corresponding c rows of B are used to form R, and P=CR.
- The probability distribution $\{p_i\}_{i=1}^n$ over column (of A) and row (of B) pairs and the rescaling are both crucial features; if chosen judiciously:

$$||AB - P||_F \le O(1/\sqrt{c}) ||A||_F ||B||_F$$

• Implementable without storing A and B in RAM, provided two passes over the matrices O(m+p) additional RAM memory.

Approximating the SVD of a Matrix

Goal: Given a matrix $A \in \mathbb{R}^{m \times n}$ we wish to approximate its top k singular values and the corresponding singular vectors in a constant number of passes through the data and additional space and time that is either O(m+n) or O(1), independent of m and n.

LINEARTIMESVD Algorithm Summary. (DFKVV99)

- ullet Given $A \in \mathbb{R}^{m \times n}$, $c, k \in \mathbb{Z}^+$, and $\left\{p_i\right\}_{i=1}^n$.
- Randomly sample c columns of A according to $\{p_i\}_{i=1}^n$ and rescale each column by $1/\sqrt{cp_{i_t}}$ to form $C \in \mathbb{R}^{m \times c}$.
- Compute $C^TC \in \mathbb{R}^{c \times c}$ (recall $CC^T \approx AA^T$) and its SVD; the singular vectors of C^TC are right singular vectors of C.
- Compute $H_k(=U_C)$, the top k left singular vectors of C and approximations to the left singular vectors of A.

Note: Sampling probabilities p_k must be chosen carefully; assume they are nearly optimal.

LINEARTIMESVD Algorithm

Input: $A \in \mathbb{R}^{m \times n}$, $c, k \in \mathbb{Z}^+$ s.t. $1 \leq k \leq c \leq n$, $\{p_i\}_{i=1}^n$ s.t. $p_i \geq 0$ and $\sum_{i=1}^{n} p_i = 1.$

Output: $H_k \in \mathbb{R}^{m \times k}$, $\{\lambda_i\}_{i=1}^k$ s.t. $\lambda_i \in \mathbb{R}^+$.

- For t = 1 to c,
 - Pick $i_t\in 1,\ldots,n$ with $\Pr\left[i_t=k\right]=p_k$, $k=1,\ldots,n$. Set $C^{(t)}=A^{(i_t)}/\sqrt{cp_{i_t}}$.
- \bullet Compute C^TC and its singular value decomposition; say $C^TC=\sum_{t=1}^{c} 2_{t}C_{t} x_{t} t^{T}$ $\sum_{t=1}^{c} \sigma_t^2(C) y^t y^{t^T}.$
- Compute $h^t = Cy^t/\sigma_t(C)$ for $t = 1, \ldots, k$.
- ullet Return H_k , where $H_k^{(t)}=h^t$, and $\{\lambda_t\}_{t=1}^k$, where $\lambda_t=\sigma_t(C)$.

Implementation of Linear (and Constant) Time Approximate SVD Algorithms

- ullet Can calculate nearly optimal p_k in one pass and O(c) additional space and time
- ullet C can then be constructed in one more pass and O(mc) additional space and time
 - C not constructed; in second pass compute nearly optimal q_i in O(w) space and time; construct W in third pass with O(cw) space and time
- ullet Computing C^TC requires $O(mc^2)$ additional space and time.
 - Computing W^TW requires $O(cw^2)$ additional space and time.
- ullet Computing the SVD of C^TC requires $O(c^3)$ additional space and time.
- Computing H_k requires O(mck) additional space and time for k matrix-vector multiplications.
 - $ilde{H}_l$ not explicitly constructed.
- Since c, k are constant, overall O(m+n).
 - Overall, O(1).

The LinearTimeSVD Algorithm, Cont.

Theorem. [DKM] Construct H_k with the LINEARTIMESVD algorithm by sampling c columns of A with probabilities $\{p_i\}_{i=1}^n$. Then:

$$\|A - H_k H_k^T A\|_F^2 \le \|A - A_k\|_F^2 + 2\sqrt{k} \|AA^T - CC^T\|_F.$$

Proof. •
$$||A - H_k H_k^T A||_F^2 = ||A||_F^2 - \sum_{t=1}^k |A^T h^t|^2$$

$$\bullet \left| \sum_{t=1}^{k} \left| A^T h^t \right|^2 - \sigma_t^2(C) \right| \le \sqrt{k} \left\| A A^T - C C^T \right\|_F$$

$$\bullet \left| \sum_{t=1}^k \sigma_t^2(C) - \sigma_t^2(A) \right| \leq \sqrt{k} \left\| CC^T - AA^T \right\|_F \quad \Box$$

Theorem. [DKM] Construct H_k with the LINEARTIMESVD algorithm by sampling c columns of A with probabilities $\{p_i\}_{i=1}^n$. Then:

$$\|A - H_k H_k^T A\|_2^2 \le \|A - A_k\|_2^2 + 2 \|AA^T - CC^T\|_2.$$

Proof. •
$$\|A - H_k H_k^T A\|_2 \le \max_{z \in \mathcal{H}_{m-k}, |z|=1} |z^T A|$$

$$\bullet \left| z^T A \right|^2 \leq 2 \left\| A A^T - C C^T \right\|_2 + \sigma_{k+1}^2(A) \text{for } z \in \mathcal{H}_{m-k}, \ |z| = 1 \quad \Box$$

The LinearTimeSVD Algorithm, Cont.

Theorem. [DFKVV99,DKM] Construct H_k with the LINEARTIMESVD algorithm by sampling c columns of A with nearly optimal probabilities and let $\eta = 1 + \sqrt{(8/\beta) \log(1/\delta)}$. Let $\epsilon > 0$. If $c = \Omega(k\eta^2/\epsilon^4)$, then

$$||A - H_k H_k^T A||_F \le ||A - A_k||_F + \epsilon ||A||_F$$

in expectation and with high probability. In addition, if $c = \Omega(\eta^2/\epsilon^4)$, then

$$||A - H_k H_k^T A||_2 \le ||A - A_k||_2 + \epsilon ||A||_F$$

in expectation and with high probability.

Proof. Combine $\|\cdot\|_F^2$ and $\|\cdot\|_2^2$ results with bound on $\|AA^T - CC^T\|_F$ from approximate matrix multiplication algorithm. \square

CONSTANTTIMESVD Algorithm Summary.

- ullet Randomly sample c columns of A according to $\{p_i\}_{i=1}^n$ and sample w rows of C with nearly optimal probabilities and rescale to form $W \in \mathbb{R}^{w \times c}$.
- Compute $W^TW \in \mathbb{R}^{c \times c}$ and its SVD; the singular vectors of W^TW are approximations to the singular vectors of C^TC and thus to the right singular vectors of C.

The ConstantTimeSVD Algorithm, Cont.

CONSTANTTIMESVD Algorithm

 $\begin{array}{ll} \textbf{Input:} & A \in \mathbb{R}^{m \times n}, \ c, w, k \in \mathbb{Z}^+ \ \text{s.t.} \ 1 \leq w \leq m, \ 1 \leq c \leq n, \ \text{and} \ 1 \leq k \leq min(w,c), \ \text{and} \ \left\{p_i\right\}_{i=1}^n \ \text{s.t.} \ p_i \geq 0 \ \text{and} \ \sum_{i=1}^n p_i = 1. \end{array}$

Output: $\{\lambda_i\}_{i=1}^l$ s.t. $\lambda_i \in \mathbb{R}^+$ and a "description" of $\tilde{H}_l \in \mathbb{R}^{m \times l}$.

- For t = 1 to c,
 - Pick $i_t \in {1,\ldots,n}$ with $\Pr\left[i_t=k\right]=p_k$, $k=1,\ldots,n$.
 - Set $C^{(t)} = A^{(i_t)} / \sqrt{cp_{i_t}}$.
- $\bullet \quad \text{Choose } \left\{q_j\right\}_{j=1}^m \text{ s.t. } q_j \geq 0, \ \sum_{j=1}^m q_j = 1, \ \text{and } q_j \geq \beta' \left|C_{\left(j\right)}\right|^2 / \left\|C\right\|_F^2 \text{ with } \beta' < 1.$
- For t = 1 to w,
 - Pick $j_t \in {1,\ldots,m}$ with $\Pr\left[j_t=j\right]=q_j$, $j=1,\ldots,m$.
 - Set $W_{(t)} = C_{(j_t)} / \sqrt{wq_{j_t}}$
- \bullet Compute W^TW and its singular value decomposition. Say $W^TW = \sum_{t=1}^c \sigma_t^2(W) z^t z^t T$.
- If a $\|\cdot\|_F$ bound is desired
 - Set $\gamma = \Theta(\epsilon^2/k)$,

Else if a $\|\cdot\|_2$ bound is desired

- Set $\gamma = \Theta(\epsilon^2)$.
- ullet Let l be the index of the smallest singular value such that $\sigma_t^2(W) \geq \gamma \, \|W\|_F^2$.
- Return $min\{l,k\}$ singular values $\sigma_t(W)$ and their corresponding singular vectors $\left\{z^t\right\}_{t=1}^l$.
- ullet (If an explicit solution is to be computed then) compute $\tilde{h}^t=Cz^t/|\sigma_t(W)|$ for $t=1,\ldots,l.$
- (If an explicit solution is to be computed then) return \tilde{H}_l , where $\tilde{H}_l^{(i)}=\tilde{h}^i$, and $\{\lambda_i\}_{i=1}^l$, where $\lambda_i=\sigma_i(W)$.

The ConstantTimeSVD Algorithm, Cont.

Theorem. [DKM] With the ConstantTimeSVD algorithm construct \tilde{H}_l by sampling c columns of A and then w rows of C with nearly optimal probabilities. Let $\epsilon > 0$. If $\gamma = \Theta(\epsilon^2/k)$, $c = \Omega(k^3/\epsilon^8)$, and $w = \Omega(k^3/\epsilon^8)$ then with probability at least $1 - \delta$

$$\left\|A - \tilde{H}_l \tilde{H}_l^T A\right\|_F \le \left\|A - A_k\right\|_F + \epsilon \left\|A\right\|_F.$$

If $\gamma=\Theta(\epsilon^2)$, $c=\Omega(1/\epsilon^4)$, and $w=\Omega(1/\epsilon^6)$ then with probability at least $1-\delta$

$$||A - \tilde{H}_l \tilde{H}_l^T A||_2 \le ||A - A_k||_2 + \epsilon ||A||_F.$$

Proof. Similar to that for the LINEARTIMESVD algorithm; more complicated due to second level of sampling since, e.g., \tilde{H}_l is not orthogonal. \square

Summary of the SVD Results

In order to compute a matrix D (e.g., $H_k H_k^T A$) s.t.

$$||A - D||_{\xi} \le ||A - A_k||_{\xi} + \epsilon ||A||_F$$

for $\xi = 2, F$, we need a sampling complexity of:

	LINEARTIMESVD	ConstantTimeSVD
$ A-D^* _2$	$1/\epsilon^4$	$1/\epsilon^6$
$ A-D^* _F$	k/ϵ^4	k^3/ϵ^8

- FKV98 did original work on low rank approximations.
 - Worked with randomly-chosen and constant-sized submatrix to compute low rank approximations to a matrix.
 - Sampled k^4/ϵ^6 rows and columns.
 - Construction of submatrix required sampling probabilities and thus O(m+n) additional space and time.
- Linear time results from DFKVV99.
- AM01 do elementwise sampling to discretize and/or zero out elements; motivation is to accelerate orthogonal iteration and Lanczos iteration.
- DKM04
 - Improvement for constant-time $\|\cdot\|_F$ bound; k^3/ϵ^8 suffice.
 - Improvement for constant-time $\|\cdot\|_2$ bound; $1/\epsilon^6$ suffice.
 - Construct sample and compute in constant additional space and time.

Summary of SVD Results of AM01

- Achlioptas and McSherry.
- Goal: speed up computation of low-rank approximations by reducing the number of nonzero elements and/or their description length.
- Idea: independently sample and/or quantize the entries of A.
- Sampling and quantization: adding a random matrix N to A, whose entries are independent random variables with zero-mean and bounded variance.
- Obtain bounds of the form:

$$||A - D^*||_2 \le ||A - A_k||_2 + O(1)\sqrt{n/p}$$

 $||A - D^*||_F \le ||A - A_k||_F + O(1) ||A_k||_F^{1/2} (kn/p)^{1/4}$

• Proofs use bounds on the eigenvalues of random matrices from FK81 and AKV02.

Summary of the SVD Results

- ullet Two algorithms to compute a description of a low-rank approximation D^* to a matrix matrix A which are qualitatively faster than the SVD.
- In the first algorithm, c=O(1) columns of A are randomly chosen and used to form C; from C^TC a description of an approximation to the top singular values and corresponding singular vectors of A may be computed such that $\operatorname{rank}(D^*) \leq k$ and such that

$$||A - D^*||_{\xi} \le ||A - A_k||_{\xi} + poly(k, 1/c) ||A||_F$$

holds with high probability for both $\xi = 2, F$.

- Implementable without storing A in RAM, provided two passes over the matrix and O(m+p) additional RAM memory.
- ullet The second algorithm approximates C by randomly sampling r=O(1) rows of C; additional error, three passes, and constant additional RAM memory.
- To achieve additional error $\leq \epsilon \|A\|_F$, both take time $poly(k,1/\epsilon,\log(1/\delta))$; the first takes time linear in $\max(m,n)$ and the second takes time independent of m and n.

The CUR Approximate Decomposition

Given a matrix $A \in \mathbb{R}^{m \times n}$, we want an A' pprox A s.t.:

- 1. A' = CUR, where C is an $m \times c$ matrix consisting of c randomly picked columns of A, R is an $r \times n$ matrix consisting of r randomly picked rows of A and U is a $c \times r$ matrix computed from C, R,
- 2. C, U, and R can be constructed after making a small constant number of passes through the whole matrix A from disk,
- 3. U can be constructed using additional RAM space and time that is either O(m+n) or O(1), independent of m and n,
- 4. for every $\epsilon>0$ and every k such that $1\leq k\leq {\rm rank}(A)$ we can choose c and r such that A' satisfies

$$||A - A'||_F \le ||A - A_k||_F + \epsilon ||A||_F$$

5. for every $\epsilon>0$ and every k such that $1\leq k\leq {\rm rank}(A)$ we can choose c and r such that A' satisfies

$$||A - A'||_2 \le ||A - A_k||_2 + \epsilon ||A||_F$$

and thus we can choose c and r such that

$$\left\|A - A'\right\|_2 \le \epsilon \left\|A\right\|_F.$$

The LinearTimeCUR Algorithm

Goal: Given a matrix $A \in \mathbb{R}^{m \times n}$ we wish to compute an approximate CUR decomposition in a constant number of passes through the data and additional space and time that is either O(m+n) or O(1), independent of m and n.

LINEARTIMECUR Algorithm Summary.

- Randomly sample c columns of A according to $\{q_j\}_{j=1}^n$ and rescale by $1/\sqrt{cq_{j_t}}$ to form $C \in \mathbb{R}^{m \times c}$.
- Randomly sample r rows of A according to $\{p_i\}_{i=1}^m$ and rescale by $1/\sqrt{rp_{i_t}}$ to form $R \in \mathbb{R}^{r \times n}$; sample the same r rows of C and rescale by $1/\sqrt{rp_{i_t}}$ to form $\Psi \in \mathbb{R}^{r \times c}$.
- \bullet Compute the SVD of $C^TC \in \mathbb{R}^{c \times c}$; say $C^TC = \sum_{t=1}^c \sigma_t^2(C) y^t y^{t^T}.$
- Let $\Phi = \sum_{t=1}^k \frac{1}{\sigma_t^2(C)} y^t y^{t^T}$ and define $U = \Phi \Psi^T \in \mathbb{R}^{c \times r}$.

LINEARTIMECUR Algorithm

Input: $A \in \mathbb{R}^{m \times n}$, $r, c, k \in \mathbb{Z}^+$ s.t. $1 \leq r \leq m$, $1 \leq c \leq n$, and $1 \leq k \leq \min(r,c)$, $\{p_i\}_{i=1}^m$ s.t. $p_i \geq 0$ and $\sum_{i=1}^m p_i = 1$, and $\{q_j\}_{j=1}^n$ s.t. $q_j \geq 0$ and $\sum_{j=1}^n q_j = 1$.

Output: $C \in \mathbb{R}^{m imes c}$, $U \in \mathbb{R}^{c imes r}$, and $R \in \mathbb{R}^{r imes n}$.

- For t = 1 to c,
 - Pick $j_t \in \{1,\ldots,n\}$ with $\mathbf{Pr}\left[j_t=k
 ight] = q_k$, $k=1,\ldots,n$.
 - Set $C^{(t)} = A^{(j_t)} / \sqrt{cq_{j_t}}$
- ullet Compute C^TC and its SVD; say $C^TC = \sum_{t=1}^c \sigma_t^2(C) y^t y^{t^T}$.
- If $\sigma_k(C) = 0$ then let $k = max\{k' : \sigma_{k'}(C) \neq 0\}$.
- For t=1 to r,
 - Pick $i_t \in \{1,\ldots,m\}$ with $\mathbf{Pr}\left[i_t=k
 ight] = p_k$, $k=1,\ldots,m$.
 - Set $R_{(t)}=A_{(i_t)}/\sqrt{rp_{i_t}}$.
 - Set $\Psi_{(t)} = C_{(i_t)} / \sqrt{r p_{i_t}}$
- Let $\Phi = \sum_{t=1}^k \frac{1}{\sigma_t^2(C)} y^t y^{t^T}$ and define $U = \Phi \Psi^T$.
- Return C, U, and R.

Implementation of Linear (and Constant) Time CUR Algorithms

- Can calculate nearly optimal $\{p_i\}_{i=1}^m$ and $\{q_j\}_{j=1}^n$ in one pass and O(c+r) space and time.
- ullet C and R can then be constructed in one additional pass and O(mc+nr) additional space and time.
 - C and R not explicitly constructed; in second pass compute nearly optimal π_i to construct W in O(w) space and time and construct W in third pass with O(cw) space and time
- \bullet Computing C^TC and the SVD of C^TC requires $O(mc^2+c^3)$ additional space and time.
 - Computing $\boldsymbol{W}^T\boldsymbol{W}$ and the its SVD of $\boldsymbol{W}^T\boldsymbol{W}$ requires $O(cw^2+c^3)$.
- ullet Ψ can be constructed in the same second pass and O(cr) space and time.
- Φ can be constructed with $O(c^2k)$ space and time.
- ullet U can be computed using $O(c^2r)$ space and time.
- Overall, O(m+n) additional space and time.
 - Overall, O(1).

Intuition for the CUR algorithms

 $H_k H_k^T A$ is an approximation to A, but it can't be computed (in this form) in a small number of passes with sublinear additional space and time.

Can $H_k H_k^T A$ be approximated?

Lemma. [DKM] Let S_R be the row sampling matrix and D_R the associated diagonal rescaling matrix. Then:

•
$$CUR = H_k H_k^T (D_R S_R)^T D_R S_R A = H_k \tilde{H}_k^T \tilde{A}$$

•
$$||A - CUR||_{\xi} \le ||A - H_k H_k^T A||_{\xi} + ||H_k H_k^T A - CUR||_{\xi}$$

$$\bullet \quad \left\| H_k H_k^T A - C U R \right\|_F = \left\| H_k^T A - \tilde{H}_k^T \tilde{A} \right\|_F$$

Note: Sampling probabilities are **not** nearly optimal with respect to approximating the product $H_k^T A$; thus must use Markov's inequality.

Note: Can view CUR as a "dimensional reduction" technique.

Note: Given A, a database of vectors, and q, a query vector, compute A'q = CURq rather than Aq to identify nearest neighbors.

$$\begin{array}{c|c}
\mathbb{R}^n & \xrightarrow{A} & \mathbb{R}^m \\
S_C & & & \\
C & & & \\
R & & & \\
& & & \\
\Phi & & & & \\
& & & & \\
D_C & & & \\
\end{array}$$

Theorem. [DKM] Suppose $A \in \mathbb{R}^{m \times n}$ and let C, U, and R be constructed from the LINEARTIMECUR algorithm by sampling c columns of A with nice probabilities $\{q_j\}_{j=1}^n$ and r rows of A with nice probabilities $\{p_i\}_{i=1}^m$. Let $\eta_c = 1 + \sqrt{(8/\beta_c)\log(1/\delta_c)}$ and let $\delta = \delta_r + \delta_c$. If $c = \Omega(k\eta_c^2/\epsilon^4)$ and $r = \Omega(k/\delta_r^2\epsilon^2)$, then

$$||A - CUR||_F \le ||A - A_k||_F + \epsilon' ||A||_F$$

both in expectation and with high probability. If $c=\Omega(\eta_c^2/\epsilon^4)$ and $r=\Omega(k/\delta_r^2\epsilon^2)$, then

$$||A - CUR||_2 \le ||A - A_k||_2 + \epsilon' ||A||_F$$

both in expectation and with high probability.

Proof. Submultiplicitivity; then apply approximate SVD results and approximate matrix multiplication results (for non-optimal probabilities). \Box

CONSTANTTIMECUR Algorithm Summary.

- Similar to the LINEARTIMECUR algorithm, except that singular values and singular vectors of C^TC are approximated by those of W^TW ; say $W^TW = \sum_{t=1}^c \sigma_t^2(W) z^t z^{t^T}$
- Let $\tilde{\Phi} = \sum_{t=1}^k \frac{1}{\sigma_t^2(W)} z^t z^{t^T}$ and define $\tilde{U} = \tilde{\Phi} \Psi^T \in \mathbb{R}^{c \times r}$.

CONSTANTTIMECUR Algorithm

 $\begin{array}{lll} \textbf{Input:} & A \in \mathbb{R}^{m \times n}, \; r, c, k \in \mathbb{Z}^+ \; \text{s.t.} \; \; 1 \leq r \leq m, \; 1 \leq c \leq n, \; \text{and} \; 1 \leq k \leq m \\ \min(r, c), \; \left\{p_i\right\}_{i=1}^m \; \text{s.t.} \; \; p_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_j\right\}_{j=1}^n \; \text{s.t.} \; \; q_j \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; \text{and} \; \left\{q_i\right\}_{j=1}^m \; \text{s.t.} \; \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}^m p_i = 1, \; q_i \geq 0 \; \text{and} \; \sum_{i=1}$ $\sum_{i=1}^{n} q_i = 1.$

Output: $U \in \mathbb{R}^{c imes r}$ and a "description" of $C \in \mathbb{R}^{m imes c}$ and $R \in \mathbb{R}^{r imes n}$.

- For t = 1 to c,
 - Pick $j_t\in\{1,\ldots,n\}$ with $\Pr\left[j_t=k\right]=q_k,\ k=1,\ldots,n$ and save $\{(j_t,q_{j_t}):t=1,\ldots,c\}.$
 - Set $C^{(t)} = A^{(j_t)} / \sqrt{cq_{j_t}}$
- Choose $\{\pi_i\}_{i=1}^m$ s.t. $\pi_i \geq 0$, $\sum_{i=1}^m \pi_i = 1$, and $\pi_i \geq eta' \left| C_{(i)} \right|^2 / \|C\|_F^2$ with $\beta' < 1$.
- For t = 1 to w.
 - Pick $i_t \in {1,...,m}$ with $\Pr\left[i_t = k\right] = \pi_k$, k = 1,...,m.
 - Set $W_{(t)} = C_{(i_t)} / \sqrt{w \pi_{i_t}}$.
- ullet Compute W^TW and its SVD; say $W^TW = \sum_{t=1}^c \sigma_t^2(W) z^t z^{t^T}$
- If a $\|\cdot\|_F$ bound is desired
 - Set $\gamma = \Theta(\epsilon^2/k)$.

Else if a $\|\cdot\|_2$ bound is desired

- Set $\gamma = \Theta(\epsilon^2)$.
- Let l be the index of the smallest singular value such that $\sigma_t^2(W) \geq \gamma \|W\|_F^2$.
- ullet Keep $min\{l,k\}$ singular values $\sigma_t(W)$ and their corresponding singular vectors $\left\{z^t\right\}_{t=1}^l.$
- For t=1 to r,
 - Pick $i_t\in\{1,\dots,m\}$ with $\Pr[i_t=k]=p_k$, $k=1,\dots,m$ and save $\{(i_t,p_{i_t}):t=1,\dots,r\}.$

 - $\begin{array}{ll} & \operatorname{Set} \, R_{(t)} = A_{(i_t)} / \sqrt{r p_{i_t}} \\ & \operatorname{Set} \, \Psi_{(t)} = C_{(i_t)} / \sqrt{r p_{i_t}}. \end{array}$
- Let $\tilde{\Phi} = \sum_{t=1}^l \frac{1}{\sigma_t^2(W)} z^t z^{t^T}$ and define $\tilde{U} = \tilde{\Phi} \Psi^T$.
- \bullet Return U, c column labels $\{(j_t,q_{j_t}): t=1,\ldots,c\}$, and r row labels $\{(i_t,p_{i_t}): t=1,\ldots,c\}$
- (If an explicit solution is to be computed then) using the column and row labels compute C and R and return C, U, and R.

The ConstantTimeCUR Algorithm, Cont.

Theorem. [DKM] Suppose $A \in \mathbb{R}^{m \times n}$ and let C, \tilde{U} , and R be constructed from the ConstantTimeCUR algorithm by sampling c columns of A with probabilities $\{q_j\}_{j=1}^n$ (and then sampling w rows of C with probabilities $\{\pi_i\}_{i=1}^m$ to construct W) and r rows of A with probabilities $\{p_i\}_{i=1}^m$. Assume that $p_i \geq \beta_r \left|A_{(i)}\right|^2 / \left\|A\right\|_F^2$, $q_j \geq \beta_c \left|A^{(j)}\right|^2 / \left\|A\right\|_F^2$, and $\pi_i \geq \beta' \left|C_{(i)}\right|^2 / \left\|C\right\|_F^2$ for some positive constants $\beta_r, \beta_c, \beta' \leq 1$. Let $\delta, \epsilon > 0$. If $\gamma = \Theta(\epsilon^2/k)$, $c = \Omega(k^3/\epsilon^8)$, $w = \Omega(k^3/\epsilon^8)$, and $r = \Omega(k^2/\epsilon^2)$, then with probability $\geq 1 - \delta$:

$$\left\|A - C\tilde{U}R\right\|_{F} \leq \|A - A_{k}\|_{F} + \epsilon \|A\|_{F}.$$

If $\gamma = \Theta(\epsilon^2)$, $c = \Omega\left(1/\epsilon^4\right)$, $w = \Omega\left(1/\epsilon^6\right)$, and $r = \Omega\left(k^2/\epsilon^2\right)$, then with probability $\geq 1 - \delta$:

$$||A - C\tilde{U}R||_{2} \le ||A - A_{k}||_{2} + \epsilon ||A||_{F}$$

Comparison of SVD and CUR

- The SVD of A is: $A = \sum_{t=1}^{\rho} \sigma_t(A) u^t v^{tT}$.
- $A_k = \sum_{t=1}^k \sigma_t(A) u^t v^{t^T} = U_k \Sigma_k V_k^T$ gives us the "optimal" rank k approximation and requires O(m+n) space if k=O(1).
- ullet CUR achieves weaker bounds which are similar in spirit.
- Think of the SVD as rotation followed by a rescaling followed by a rotation.
- ullet Think of the CUR decomposition as more like A followed by A^\dagger followed by A.

Summary of CUR

- ullet Two algorithms to compute an approximation to A which is the product of three smaller matrices, C, U, and R, each of which may be computed rapidly.
- Let A' = CUR; both algorithms have provable bounds for the error matrix A A'.
- In the first algorithm, c = O(1) columns of A and r = O(1) rows of A are randomly chosen to form C and R, repsectively; U calculated from C and R.
- $\|A A'\|_{\xi} \le \|A A_k\|_{\xi} + poly(k, 1/c) \|A\|_F$ holds in expectation and with high probability for both $\xi = 2, F$ and for all $k = 1, \ldots, rank(A)$.
- By appropriate choice of k: $\|A A'\|_2 \le \epsilon \|A\|_F$
- Implementable without storing the matrix A in RAM, provided two passes over the matrix and O(m+n) additional RAM memory.
- The second algorithm is similar except that it approximates the matrix C by randomly sampling O(1) rows of C; additional error, three passes, and constant additional RAM memory.
- To achieve additional error $\leq \epsilon \|A\|_F$, both take time $poly(k, 1/\epsilon, 1/\delta)$; the first takes time linear in $\max(m, n)$ and the second takes time independent of m and n.

Lower Bounds

- How many queries does a sampling algorithm need to approximate a given function accurately with high probability?
- ZBY03 proves lower bounds for the low rank matrix approximation problem and the matrix reconstruction problem.
 - Any sampling algorithm that with high probability finds a good low rank approximation requires $\Omega(m+n)$ queries.
 - Even if the algorithm is given the exact weight distribution over the columns of a matrix it will still require $\Omega(k/\epsilon^4)$ queries.
 - Finding a matrix D such that $\|A-D\|_F \leq \epsilon \|A\|_F$ requires $\Omega(mn)$ queries and that finding a D such that $\|A-D\|_2 \leq \epsilon \|A\|_F$ requires $\Omega(m+n)$ queries.
- Applied to our results:
 - The LINEARTIMESVD algorithm is optimal with respect to $||\cdot||_F$ bounds; see also DFKVV99.
 - The ConstantTimeSVD algorithm is optimal with respect to $||\cdot||_F$ bounds up to polynomial factors; see also FKV98.
 - The CUR algorithm is optimal for constant ϵ .

Review of Linear Programming

Primal LP: $\max cx$ s.t. $Px \leq b$, $x \geq 0$.

Def: x is a *feasible solution* if $Px \leq b$ and $x \geq 0$.

Dual LP: $\min by$ s.t. $P^Ty \ge c$, $y \ge 0$.

Note: The feasible region is a convex polyhedron.

Sampling Linear Programs

Theorem. [DKM] Let $P \in \mathbb{R}^{r \times n}$, $b \in \mathbb{R}^r$ and consider:

$$Px = \sum_{i=1}^{n} P^{(i)} x_i \le b \qquad 0 \le x_i \le c_i.$$
 (1)

Suppose Q is a random subset of $\{1, 2, \ldots n\}$, with |Q| = q, formed by picking elements of $\{1, 2, \ldots n\}$ with probability

$$p_i = \mathbf{Pr}\left[i_t = i\right] = \frac{c_i \left|P^{(i)}\right|}{\mathcal{N}},$$

where $\mathcal{N} = \sum_{i=1}^{n} c_i \left| P^{(i)} \right|$. Let $\eta = 1 + \sqrt{8 \log(1/\delta)}$. If LP (1) is feasible, then with probability at least $1 - \delta$

$$\sum_{i \in Q} \frac{1}{q p_i} P^{(i)} x_i \le b + \frac{\eta \mathcal{N}}{\sqrt{q}} \vec{\mathbf{1}}_r \qquad 0 \le x_i \le c_i$$

is feasible as well. If LP (1) is infeasible, then with probability at least $1-\delta$

$$\sum_{i \in Q} \frac{1}{q p_i} P^{(i)} x_i \le b - \frac{\eta \mathcal{N}}{\sqrt{q}} \vec{\mathbf{1}}_r \qquad 0 \le x_i \le c_i$$

is infeasible as well.

Proof. Uses matrix multiplication ideas and also LP duality.

Sampling Linear Programs, Cont.

• If $\{Px \leq b, 0 \leq x_i \leq c_i\}$ is *feasible* then $\forall i$:

$$\begin{array}{c|c}
(Px)_i \\
\downarrow b_i \\
\hline
(\tilde{P}\tilde{x})_i
\end{array}$$

Thus, $\{\tilde{P}\tilde{x} \leq b + \delta b \vec{1}_n, 0 \leq x_i \leq c_i\}$ is also *feasible*.

• If $\{Px \leq b, 0 \leq x_i \leq c_i\}$ is infeasible then $\exists i$:

$$b_{i} \downarrow b_{i} \downarrow b_{i} - \delta b \downarrow \tilde{P}\tilde{x})_{i}$$

Thus, $\{\tilde{P}\tilde{x} \leq b - \delta b \vec{1}_n, 0 \leq x_i \leq c_i\}$ is also infeasible.

• Note: If $c_i = 1$ for all i, then $\sum_{i=1}^n \left| P^{(i)} \right| \leq \sqrt{n} \|P\|_F$ and the induced LP becomes

$$\sum_{i \in Q} \frac{1}{q p_i} P^{(i)} x_i \le b \pm \eta \sqrt{\frac{n}{q}} \|P\|_F \vec{\mathbf{1}}_r \qquad 0 \le x_i \le 1.$$

Other Perturbed LP Results

- Renegar '94, '95:
 - Developing a complexity theory for real data.
 - Customary measures of size were replaced with condition measures.
 - Consider: $Px \leq b$, $x \geq 0$; to decide whether d = (P, b) is a consistent system of constraints, consider the minimal relative perturbation of d.
- Spielman and Teng '01: "smoothed complexity"
 - Studying the performance of algorithms under small random perturbation of their inputs.
 - Consider: $\max z^T x$ s.t. Px < b.
 - Replace it with: $\max z^T x$ s.t. $(P + \sigma G)x \leq b$.
- ullet We perturb Px to $\tilde{P}\tilde{x}$ and then choose a new b.
- We replace $Px \leq b$ with $\tilde{P}\tilde{x} \leq b \pm \delta b$.
- ullet δb can be quite large.

Review of Max-Cut

- Let G=(V,E) be a graph with |V|=n and edge weights $w:E\to\mathbb{R}$.
- For $S \subset V$ let $cut(S, \overline{S})$ be those edges with exactly one end in S and the weight $w(S, \overline{S})$ be the sum of the weights of the edges.
- The maximum weight cut problem or the Max-Cut problem is: Find a cut (or the weight of a cut) with maximum weight over all possible cuts.
- Max-Cut is NP-hard, both in general and for dense graphs.
- There exists a constant α , bounded away from 1, such that (assuming $P \neq NP$) it is not possible to α -approximate Max-Cut; thus, there is no PTAS for Max-Cut.
- A polynomial time approximation scheme (PTAS) is an algorithm that for every fixed $\epsilon > 0$ achieves an approximation ratio of 1ϵ in time poly(n).

Review of Approximating Max-Cut and Max-2-CSP Problems

- Goemans and Williamson '94:
 - 0.878-approximation algorithm.
- Arora, Karger, and Karpinski '95: ϵn^2 additive error
 - Linear Programming and Randomized Rounding.
 - $O\left(n^{O(1/\epsilon^2)}\right)$ time.
- De La Vega '96: ϵn^2 additive error

 - Combinatorial methods. $O(n^2 2^{1/\epsilon^2 + o(1)})$ time.
- Frieze and Kannan '96: ϵn^2 additive error (*)
 - Efficient version of Szemerédi's Regularity Lemma.
 - PTAS for dense graph problems like Max-Cut.
 - $O(poly(1/\epsilon)n^{2.6} + \beta(1/\epsilon))$ time.
- ullet Goldreich, Goldwasser, and Ron '96: ϵn^2 additive error
 - Query complexity and property testing methods.
 - $O(1/\epsilon^5)$ sampling complexity.
 - Constructing the Max-Cut takes O(n) time.
- Frieze and Kannan '97: ϵn^2 additive error (*)
 - New method to approximate matrices.
 - PTAS for all dense Max-CSP problems.
 - $= 2O(1/\epsilon^2)$ time
- Alon, De La Vega, Kannan, and Karpinski '03: ϵn^2 additive error (*)
 - PTAS for all dense Max-CSP problems.
 - $-O\left(\frac{\log 1/\epsilon}{\epsilon^4}\right)$ sampling complexity for Max-Cut, etc.
- De La Vega and Karpinski '04:
 - PTAS in subdense Max-2-CSP problems, e.g., graphs with $\Omega(n^2/\log n)$ edges.

Approximation Algorithm for Max-Cut

Let G = (V, E) be a graph with adjacency matrix A:

- MAX-CUT $[A] = \max_{x \in \{0,1\}^n} x^T A(\vec{1}_n x).$
- ullet Reduce this to $oldsymbol{\mathsf{MAX-CUT}}\left[C ilde{U} R
 ight]$.
- Reduce this to testing a constant number of integer programs $\mathbf{IP}(u,v)$, $(u,v)\in\Omega_{\Delta}$ for feasibility.
- Relax $\mathbf{IP}(u, v)$ to $\mathbf{LP}(u, v)$.
- ullet Sample from $\mathbf{LP}(u,v)$ to construct $\mathbf{LP}_Q(u,v)$.
 - Use LP Sampling Theorem.
 - Check each of the large but constant number of these LPs for feasibility in constant time.

Approximation Algorithm for Max-Cut, Cont.

Our new result: Approximate the Max-Cut of G=(V,E) up to additive error

$$\epsilon n \left\| A \right\|_F = \epsilon n \sqrt{2 \left| E \right|}$$

in constant time and space after reading the graph three times. We need to keep $O(1/\epsilon^{26})$ entries from the adjacency matrix of G.

Note: Particularly useful for graphs with nonuniformities and heterogenities.

- Unweighted graphs: better as $|E|/n^2$ decreases.
- Weighted graphs: $\epsilon n \|A\|_F$ versus $\epsilon n^2 W_{max}$.

Also: Approximate Max-2-CSP problems in a similar manner and with similar error.