Fast Monte Carlo Algorithms for
Matrices

Michael W. Mahoney

Department of Mathematics
Yale University
michael .mahoney@yale.edu
http://www.cs.yale.edu/homes/mmahoney

Joint work with:
Petros Drineas and Ravi Kannan

For more information, see the papers at:
http://www.cs.yale.edu/homes/mmahoney/matrix

Goal: To develop and analyze fast Monte Carlo
algorithms for performing useful computations on large
matrices.

e Matrix Multiplication
e Computation of the Singular Value Decomposition
e Computation of the CU R Decomposition

e Testing Feasibility of Linear Programs

Such matrix computations generally require time which
is superlinear in the number of nonzero elements of
the matrix, e.g., n° in practice.

These and related algorithms useful in applications
where data sets are modeled by matrices and are
extremely large.

Applications of these Algorithms

Matrices arise, e.g., since n objects (documents,
genomes, images, web pages), each with m features,
may be represented by a matrix A € R™*".

e Covariance Matrices

e Latent Semantic Indexing

e DNA Microarray Data

e Eigenfaces and Image Recognition

e Similarity Query

e Matrix Reconstruction

e Numerous Linear Programming Applications

e Design of Approximation Algorithms for Classical
CS N P-hard Optimization Problems

Linear Algebra Review

For A € R™*" let AW, 7 =1,...,n, denote the j-th column
of Aand Ay, @ = 1,...,m, denote the i-th row of A.

A
1A]l, = sup,egn, o0 Top

m n 1/2 1/2
Al = (Zi:l Zj:l A?j) — ('I‘r (ATA)) /
[All; < [|AllF < Vv lAll,

Theorem. [SVD] If A € R™*", then there exist
orthogonal matrices U and V and a matrix X =
diag(o1,...,0,), 01 > 02> ... > 0, > 0, such that

A=UsVT =0,V =Y outet
t=1

U= [u"w?...u™m], V = [v'v?...v"], and & constitute the
Singular Value Decomposition (SVD) of A.

e 0; are the singular values of A

e u' v’ are the i-th left and the i-th right singular vectors

Linear Algebra Review, Cont.

Recall that:
. Av® = o;u’
ATy = o0

 { M=o
4l = iy o3

Theorem. Let Ay = UpSiViE = S8 oputo

t1,

o A =UrUlA= (Zle ututT) A

o A= AV,VT = A (zf:

o ||A— Ai||, =min

t 1
11}'0)

DeRmxn.rank(D)<k |A — D],

2 : 2
o [|[A—Akllr= UL B cgmxn. rank(D) <k |A—D|%

() maXt:1§t§n|at(A+E) - Ut(A)| S ||EH2

¢ Yiii(ok(A+ E) —ar(A)* < |IE|l7

Overview and Summary

Pass-Efficient Model and Random Sampling
Matrix Multiplication

Singular Value Decomposition

CU R Decomposition

Lower Bounds

Testing Feasibility of Linear Programs

Approximating Max-Cut and Max-2-CSP Problems

Computation on Massive Data Sets

Data are too large to fit into main memory; they are
either not stored or are stored in external memory.

Algorithms that compute on data streams examine the
stream, keep a small “sketch” of the data, and perform
computations on the sketch.

Algorithms are randomized and approximate.

Performance is evaluated by measures such as:

e the time to process an item
e the number of passes over the data
e the additional workspace and time

e the quality of the approximation returned

MP78: studied “the relation between the amount of
internal storage available and the number of passes
required to select the K-th highest of IV inputs.”

The Pass-Efficient Model

Amount of disk space has increased enormously; RAM and
computing speeds have increased less rapidly.

We can store large amounts of data but we cannot process these
data with traditional algorithms.

In the Pass-Efficient Model:

e Data are assumed to be stored on disk.

e The only access the algorithm has to the data is
with a pass, where a pass is a sequential read of the
entire input from disk where only a constant amount
of processing time is permitted per bit read.

e An algorithm is allowed additional RAM space and
additional computation time.

An algorithm is pass-efficient if it requires a small constant number
of passes and sublinear additional time and space to compute a
description of the solution.

If data are A € R™*", then algorithms which require additional
time and space that is O(m 4+ n) or O(1) are pass-efficient.

Random Sampling

Typically, random sampling is used to estimate some
parameter defined over a large set by looking at only a
very small subset.

Uniform Sampling: every piece of data is equally likely
to be picked.

e Advantages

— “Coins” can be tossed “blindly.”

— Even if the number of data elements is not known in
advance, can select one element u.a.r. in one pass over the
data.

— Much recent work on quantities that may be approximated
with a small uniformly drawn sample.

e Disadvantages
— Many quantities cannot be approximated well with a small
random sample that is uniformly drawn.
— E.g., compute the average of n numbers, where there is a
lot of cancellation.

Random Sampling, Cont.

Nonuniform Sampling:

e Advantages

— Can obtain much more generality and big gains, e.g., can
approximately solve problems in sparse as well as dense
matrices.

— Smaller sampling complexity for similar bounds.

e Disadvantages

— Must determine the nonuniform probabilities; multiple
passes over the data usually needed.

Main conclusion of the work: A “sketch” consisting
of a small number of judiciously chosen and randomly
sampled rows and columns is sufficient for provably
rapid and efficient approximation of a variety of
common matrix operations.

10

Sampling Lemmas

SELECT Algorithm

Input: {aq,...,an}, a; > 0, read in one pass, i.e., one sequential read,
over the data.

- %

Output: 7, a;x.

e D=0.
e Forz=1ton,
- D=D+ a;.
— With probability a;/D, let i* = ¢ and a;x = a;.

-
e Return ™, a x.

Lemma. [DKM] Suppose that {aq,...,a,}, a; >0,
are read in one pass. Then the SELECT algorithm
requires O(1) additional storage space and returns i*

such that Pr[i* =i = a;/ > 1_, a.

The sparse-unordered representation of data is a form of data
representation in which each element of the data stream consists
of a pair ((¢,7), Aij), where the elements in the data stream
may be unordered with respect to the indices (%,) and only the
nonzero elements of the matrix A need to be presented.

11

Approximating Matrix Multiplication

For A € R™*™ and B € R"*P, AB may be written as
the sum of n rank-one matrices:

n

AB =) AWBy.
t=1
A B = t:Zl A0 | (B

BASICMATRIXMULTIPLICATION (BMMA) Algorithm
Summary.

e Given A € R™", B € R"*?, c € Z*, and {pi}_,.

e Randomly sample ¢ columns of A according to {p;}._; and
rescale each column by 1/, /¢p;, to form C € R™*<.

e Sample the corresponding ¢ rows of B and rescale each row
by 1/,/¢pi; to form R € R*P.

e Return P = CR.

P=CR=Y¢,CWRy =3¢ LAWB,,

t=1 cp;,

12

BASICMATRIXMULTIPLICATION Algorithm
Input: A € R™*" BeR"™P ceZ " st. 1 <c¢< n, and {piti—q
st. p; > 0and Y7 p; = 1.

Output: P € R™*P.

e Fort =1toc,
— Pick i+ € {1,...,n} with Pr[i; =k] = p,, £k = 1,...,n,
independently and with replacement.
— Set C(t) = A(zt)/m and R(t) = B(Zt)/\/wzt
e Return P = CR.

13

RP R™ R™
R © B:RF - R"
A:R*" - R™
RC
—
D

Define the sampling matrix S € R"*¢ as:

1 if the i-th column of A (and i-th row of B)
Sij = is chosen in the j-th trial
0O otherwise

Define the rescaling matrix D € R°*¢ as:

. 1 — ¢/
D, = { (1)/«/cpzt ift =t

otherwise

Then C = ASD and R = (SD)? B so that
P=CR=ASD(SD)'B = AB = AB.

14

15

Advantages of the BMMA

Conceptually simple and easily implementable.

Algorithm and preprocessing do not need to be
modified in the presence of negative entries.

Nice interpretation if if A or B are low rank (or well
approximated by low-rank matrices).

Randomization is used only in the preprocessing
step.

Memory requirements are relatively small.

Can use any algorithm for the smaller matrix
multiplication.

Does not tamper with the sparsity structure of the
matrices.

16

Implementation of the BMMA

e Recall, A: R®" - R™ and B : RP — R".

e Uniform sampling: O(1) space and time to sample
and O(m + p) space and time to construct C and
R

e Nonuniform sampling: for nice probabilities one
pass and O(n) (or O(1) if B = A1) space and time
to construct probabilities and a second pass and
O(m + p) space and time to construct C' and R.

Def: A set of sampling probabilities {p;}.__, are nearly
optimal probabilities if 3 a positive constant 5 < 1:

o> AW \k/\Buﬂ)\
> =1 [AE] | B

Note: If 3 =1 then E [HAB — CR||%} is minimized.

17

Lemma. [DKM]

E[(CR)i] = (AB);
Var[(CR);] = - zn: AiZBkj ~ LBy
C 1 k C

p

E|||AB-CRI}| = >3 Var[(CR)y].

i=1 j=1

Theorem. [DKM] If {p;},_, are nearly optimal
probabilities then

1

E[||AB - CR||,] < Ally 1Bl g
[Irl < Z= 1 4lle 1Bl

Let§ € (0,1) andn=1++/(8/8)1log(1/4); then with
probability at least 1 — §:

U
|AB ~CRIlp < = Allp 1Bl

Proof. Expectation straightforward; whp uses Doob
martingales and Hoeffding-Azuma inequality. O

18

Corollary. [DKM] If B = AT and {p;};_, are nearly
o

optimal probabilities, i.e., pr >

T _coT oare
e By A

and with probability at least 1 — 9:

|44 00| < =114l

19

Sampling with non-nearly optimal probabilities.

[t]

E|[|[AB —CR|p| <

whp. |AB — CR||p <

comments and restrictions

k
o> A B L ||Allp 1Bl || Al |IBllp n=1+,/510g (%)
B Zk‘,’ A(k) B(k,) \/m \/m & °
_ Al 8
glatk)?) : n =1+ ppe My o (
—— ||A B —— ||A B
PEZ T = 1 4llp I1BIlF = 1l4llF 1BllF [BEZ;
A
IBIIE v /810 (
Al | L_|Allp IB] Al g IIBI) o ”A”sz)\ plee(
- e —_— A (8%
Pk =T IBI% VBe IE IELE Vpe I IR M = maxa
B
(a)
ﬂ‘A(k)‘ 1 7)—1-1—\/ log
L 4 M 1A M
Pk Z’:l A(k,)‘ \/ﬁ_C” ”F\/ﬁ \/m” ”F\/ﬁ M = maxg ‘B(a)‘
8Bk | . n:1+\/§1og (3)
g > L /nM|B|F —_/nM| Bl P
Z’:l B(k/)‘ \/m \/m M = maxq, ‘A(a)‘
gl AW |
1 _n_ 1
Pl 2 Al Bl 5 T AlF IBlp | = lAlp IBlp n=1+4/Flos (5)
Pp = % See Lemma XX. See Lemma XX. See Lemma XX.

20

Element-wise Error Bounds for BMMA

Lemma. [DKM] Let M be such that |A;;| < M
and |B;;| < M. Construct an approximation P =
CR to AB with the BASICMATRIXMULTIPLICATION
algorithm. If pr, = 1/n then with probability greater

than 1 — 9 Vi, j

(4B), — (CR)y| < TSI/

If {pr},_, are nearly optimal probabilities then with
probability greater than 1 — ¢ Vi, j

(AB),; — (CR);| < W%M V@/B) n@mp)d)

Note: Nearly optimal probabilities are worse by a
factor of \/mp/f since they are nearly optimal with

respect to minimizing E [||AB — CR||§;}

21

Multiplying more than two matrices

Given matrices A € R™*" B € R"*P (C € RPX4

n p
ABC =) > A¥)B,Cy.

s=1 t=1

First algorithm: Randomly choose ¢; times 5 €
{1,...,n} according to {p;}; and and choose c;
times j; € {1,;..,p} accorging to {q;}5i—;- Then form
the matrices A € R™*¢1 B € R1*¢2 and C &€ R2*4

so that ABC' = > 01, > 72,

c1¢2Pis 4,

S(CaCZ E‘(Aacl)

B
RC2 -9 RCl
N— N—
plag} pirg}

eo AU)B; ;.C

Note: Analysis is difficult due to non-independence in

sampling.

22

Second algorithm: Randomly choose ¢ times
(is,7¢) € {1,...,n} x {1,...,p} according to
{pri}ri—, and define

C

1
P = Z A(kS)BksltC(lt).
(s,0)=1 Phole

Lemma. [DKM]

E(P)zg — (ABC)ij

L S | 1 0
=D > —ALBuC;,; — = (ABO);;.
C C

Var _(P),L.j_ = oo
k=1 1=1

If
‘A(k)‘ |Bru| |Cw

prt 2> B
> v [A® Byl [Cuy
for some B < 1, then

1
E [“ABC—PH%] < @E D> ‘A(k)‘ | Bl [Cl-
koI

and a similar result can be shown to hold with high probability.

Note: Difficult in general to compute optimal
probabilities.

23

Second Matrix Multipliation Algorithm

ALTERNATEMATRIXMULTIPLICATION Algorithm

Input: A € R™X"™ B € R"*P, ¢ € ZT such that 1 < ¢ < n, and

’p’
{p(”) such that pl(ﬂj) >0and > 7 1p(”) =1, forall i, 5.
’J’

Output: P ¢ RmXp.

Algorithm:

e For: =1tomand 3 =1 to p,
— Fort =1 to c,
x Pick i € {1,...,n} with Pr[i; = k] —pgj), kEk=1,...,n,
independently and with replacement.
v se Pl = S
t
— Set P = > 54 Pt”.

e Return P = (Pij)-

Notes:

e Recall: (14B)7J.7 = Z?:l AitBtj-

e Approximate the product AB by estimating each of its
elements independently by randomly sampling from terms
in this sum.

e Improved bound with respect to the spectral norm.

e Cannot be implemented unless either a large number of passes
are performed or both matrices A and B are stored in RAM.

24

Lemma. [DKM] Construct an approximation P to AB with
the ALTERNATEMATRIXMULTIPLICATION algorithm. If p(7 =
1/n then

2 k
B 148 - PIR] < 23 [a®]" Bl
k=1

pr(@J) zk/ |A(z)| then
1
2 2 2
B|AB - Pl;] < = lIAl% 1Bl

Theorem. [DKM] Lletm—+p > 24, M = maxz-j{Aij, Bij}r
and ¢ < % Construct an approximation P to AB with
the ALTERNATEMATRIXMULTIPLICATION algorithm. Then,

with probability at least 1 — 1/(m + p)

10
|AB — P||, < %an\/m + p.

Proof. Makes use of concentration results of the eigenvalues of
random matrices from AMO03, FK81, KV00. O

25

Third Matrix Multipliation Algorithm

ELEMENTWISEMATRIXMULTIPLICATION Algorithm
Input: A € R™*" B ¢ R"*P, {pij}’fjle such that 0 < p;; < 1, and
{q”}?;p:l such that 0 < Qi j <1

Output: P € R™*P.
Algorithm:

e Forte =1tomand 5 = 1 to n,

— Set
S = Aij /pij with pr.obability Dij
J 0 otherwise.
e Fort: =1tonand 5 =1 to p,

— Set
R — B;j;/q;; with probability g;;
v 0 otherwise.
e Return P = SR.

Notes:

e Nonuniformly sample elements rather than rows and columns.
e Based on idead from AMO01 and AMO3.

e The algorithm does not keep “corresponding” elements.

e |Implementable in two passes.

e We get an expected number of elements and so an expected

running time.

26

Lemma. [DKM] Let p;; = min{1,£A? /||A||F} and q;; =

min{1, ¢'B Z.j/ |B||5}. Construct an approximation P =
SR to AB with the ELEMENTWISEMATRIXMULTIPLICATION
algorithm.

2 mpn k
B (1145 - PI2] > Z22 Al (1BI%- Z\A”\ Bw|”.

Theorem. [DKM] Let

O(1)|| Al plog3 n

min{1, AL/ || Allp} if Ay >

Dii = Vi vnl
L A; n
min{1, |\/ﬁ||L1||C)§ } otherwise
Let £ = ¢ < ||X||F/maxsz2 for X = A,B and let

m=n=27p andn > log® n. Construct an approximation P =
SR to AB with the ELEMENTWISEMATRIXMULTIPLICATION
algorithm. Then, with probability at least 1 — 1/n,

152n n 50N
¢ ¢

|AB — Plf; < Al 1Bl

Proof. Makes use of concentration results of the eigenvalues of
random matrices from AMO3, which in turn is based on FK81,
KV00. O

27

Summary of Matrix Multiplication

Three algorithms to compute an approximation P
to the product AB.

Provable bounds on the error matrix P — AB and
run in O(mp + mn + np) time.

For the BASICMATRIXMULTIPLICATION algorithm,
¢ = O(1) columns of A are randomly chosen and

rescaled to form a matrix C, the corresponding c
rows of B are used to form R, and P = CR.

The probability distribution {p;}._, over column (of
A) and row (of B) pairs and the rescaling are both
crucial features; if chosen judiciously:

IAB — P|lp < O(1/Ve) |Allp 1Bl

Implementable without storing A and B in RAM,
provided two passes over the matrices O(m + p)
additional RAM memory.

28

Approximating the SVD of a Matrix

Goal: Given a matrix A € R™*"™ we wish to
approximate its top k singular values and the
corresponding singular vectors in a constant number of
passes through the data and additional space and time
that is either O(m 4+ n) or O(1), independent of m
and n.

LINEARTIMESVD Algorithm Summary. (DFKVV99)

e Given A € R™ " ¢,k € Z", and {p;};_,.

e Randomly sample ¢ columns of A according to {p;},_, and
rescale each column by 1/,/¢p;, to form C' € R™*¢.

e Compute CTC € R*¢ (recall CCT ~ AAT) and its SVD;
the singular vectors of CT'C' are right singular vectors of C.

e Compute Hi(= Uc), the top k left singular vectors of C
and approximations to the left singular vectors of A.

Note: Sampling probabilities pr must be chosen
carefully; assume they are nearly optimal.

29

LINEARTIMESVD Algorithm

Input: A € RMX" ¢k € zt st 1 < k< c<n, {pi}?:l st. p; > 0 and
i=1Pi = 1

Output: Hj, € R™** AP st) eRT.

e Fort=1toc,

- Pickiz €1,...,nwithPrli; = k] =pp, k=1,...,n.

~ set 0(t) = A(it)/m_

Compute cTc and its singular value decomposition; say cTe =

E:ﬁzlof(CUytyﬁr-

Compute ht = Cyt/at(C’) fort=1,...,k.

Return Hp,, where H]E:t) = ht, and {)\t}le, where A\ = 04(C).

A

R" R™

(v'} 4 {u'} H(=Ugp)
R™ _
{hi}

C 3o

R" R™

(v}
R€ R€
< Y(=V©o)

cTc

30

Implementation of Linear (and constanty Time
Approximate SVD Algorithms

e Can calculate nearly optimal pg in one pass and
O(c) additional space and time

e (can then be constructed in one more pass and
O(mc) additional space and time

— C not constructed; in second pass compute nearly optimal g; in O (w)
space and time; construct W in third pass with O(cw) space and
time

e Computing CTC requires O(mc?) additional space
and time.

— Computing wTw requires O(cw2) additional space and time.

o Computing the SVD of CTC requires O(c?)
additional space and time.

e Computing Hj requires O(mck) additional space
and time for k matrix-vector multiplications.

— Hj not explicitly constructed.

e Since ¢, k are constant, overall O(m + n).
— Overall, O(1).

31

The LinearTimeSVD Algorithm, Cont.

Theorem. [DKM] Construct Hy, with the LINEARTIMESVD
algorithm by sampling ¢ columns of A with probabilities {p;};_;.
Then:

2
HA _ HkH,CTAHF < |4 — Ak||§+2ﬂ) AAT CCTHF.

2

2
Proof. /4 — HkHZAHF — |A1% -k, ‘ATht

>k ‘AThtf - a?(C)‘ < \/EHAAT _ CCTHF

. \Z'le o2(C) — af(A)‘ <Vk HCCT _ AATHF O

Theorem. [DKM] Construct Hy, with the LINEARTIMESVD
algorithm by sampling ¢ columns of A with probabilities {p;};_;.

Then:

2
HA _ HkH,’fAH2 < JlA — A2+ 2 (AAT . CCTH2.

Proof. «

T T
A—Hka AH2 Smaszer_k,'d:l z A‘

zTA‘2 <2 HAAT _ C’CTH2 + 02, [(A)for z € Hyy_p |2l =1 O

32

The LinearTimeSVD Algorithm, Cont.

Theorem. [DFKVV99,DKM] Construct Hj with
the LINEARTIMESVD algorithm by sampling c
columns of A with nearly optimal probabilities and let
n=1++/(8/8)log(1/8). Lete > 0. Ifc = Q(kn?/e?),
then

|A— HeHy Al < A= Akllp + €l Al

In expectation and with high probability. In addition,
if c = Q(n?/e*), then

|A = HyHy Al|, < [[A— Agll, + €[Allp

in expectation and with high probability.

Proof. Combine ||-|[% and ||-||2 results with
bound on ||AAT — CCT||,. from approximate matrix
multiplication algorithm. O

33

CONSTANTTIMESVD Algorithm Summary.

e Randomly sample ¢ columns of A according to {p;},;_, and
sample w rows of C' with nearly optimal probabilities and
rescale to form W € R¥*“.

e Compute WTW € R°*¢ and its SVD; the singular vectors
of WTW are approximations to the singular vectors of C*C
and thus to the right singular vectors of C.

)
R"™ R™
1% U
{2y 4 {u'} H
R"™ R™ R™
{R%}
C Xw
(=%}
T C c
wiw TR R
Z(=Vyy)
1%
b 7 7
RY RY
Uw

34

The ConstantTimeSVD Algorithm, Cont.

CONSTANTTIMESVD Algorithm
Input: A €R™*"™ cwkeZt st 1<w<ml1<c<nadl<kc<
min(w, c), and {pi}?:l s.t. p; > 0 and E?’:l p; = 1.
Output: {Ai}flizl s.t. A\ € RT and a “description” of Hj e RN XL
e Fort=1toc,
- Pickig€1,...,nwithPrliy =k] =pp, k=1,...,n.
_ (1) — A(it) :
Set CV/ = A /m.

e Choose {qj}
B < 1.

e Fort=1 to w,

T st gi>0 >om - =1, and ->B"C-‘2/||C||2 with
j=1 %0 42 =195 = Handdy = (4) F

— Pick j; € 1,...,m with Pr [j; = j] =qjj=1,...,m.
~ 5 W) = Can/ VT
e Compute WTW and its singular value decomposition. Say WTW =

¢ o2(W)att’
e Ifa [[-||f bound is desired
— Sety = @(62/k:),
Else if a ||-||o bound is desired
— Sety = @(62).
e Let [be the index of the smallest singular value such that atQ(W) >y ||W||%1

e Return min{l, k} singular values o4(W) and their corresponding singular vectors

{zt}izl'

e (If an explicit solution is to be computed then) compute Rt = C’zt/|at(W)| for
t=1,...,1L

e (If an explicit solution is to be computed then) return I:Il’ where I?l(z) = fzz and
{2}, where A; = oy (W).

35

The ConstantTimeSVD Algorithm, Cont.

Theorem. [DKM] With the CONSTANTTIMESVD
algorithm construct H; by sampling ¢ columns of A

and then w rows of C' with nearly optimal probabilities.
Let € > 0. If v = O(e?/k), ¢ = Q(k*/€®), and
= Q(k3/€e®) then with probability at least 1 — §

|4~ maf Al < |l4— Ayt e]lAllp

If v = O(e?), ¢ = Q(1/€*), and w = Q(1/€%) then
with probability at least 1 — ¢

|4 - mATA| < 1A= Aglly +)14l

Proof. Similar to that for the LINEARTIMESVD
algorithm; more complicated due to second level of
sampling since, e.g., H; is not orthogonal. O

36

Summary of the SVD Results

In order to compute a matrix D (e.g., H,H} A) s.t.
A = Dlle < [|[A = Axll¢ +€llAllp

for &€ = 2, F', we need a sampling complexity of:

LINEARTIMESVD CoONSTANTTIMESVD
i) 5
A — D*||, 1/64 1ée -
A—D*||, | k/e k° /e

e FKV98 did original work on low rank approximations.
— Worked with randomly-chosen and constant-sized
submatrix to compute low rank approximations to a matrix.
— Sampled k*/€® rows and columns.
— Construction of submatrix required sampling probabilities
and thus O(m + n) additional space and time.
e Linear time results from DFKVV99.

e AMO1 do elementwise sampling to discretize and/or zero out
elements; motivation is to accelerate orthogonal iteration and
Lanczos iteration.

e DKMO04
— Improvement for constant-time ||-|| » bound; k*/¢® suffice.
— Improvement for constant-time ||-||, bound; 1/¢° suffice.
— Construct sample and compute in constant additional space
and time.

37

Summary of SVD Results of AMO01

Achlioptas and McSherry.

Goal: speed up computation of low-rank
approximations by reducing the number of nonzero
elements and/or their description length.

ldea: independently sample and/or quantize the
entries of A.

Sampling and quantization: adding a random matrix
N to A, whose entries are independent random
variables with zero-mean and bounded variance.

Obtain bounds of the form:
|A—D%|, < [[A—Aglls+0(1)y\/n/p

1/2
JA=D*|p < 1A= Apllp +O) | Akl (kn/p)

Proofs use bounds on the eigenvalues of random
matrices from FK81 and AKVO02.

38

Summary of the SVD Results

e Two algorithms to compute a description of a low-rank
approximation D™ to a matrix matrix A which are qualitatively
faster than the SVD.

e In the first algorithm, ¢ = O(1) columns of A are randomly
chosen and used to form C; from CTC a description of an
approximation to the top singular values and corresponding
singular vectors of A may be computed such that rank(D™) <
k and such that

A —D||, < lA — Axllg + poly(k, 1/c) | All

holds with high probability for both & = 2, F'.

e Implementable without storing A in RAM, provided two passes
over the matrix and O(m + p) additional RAM memory.

e The second algorithm approximates C' by randomly sampling
r = O(1) rows of C; additional error, three passes, and
constant additional RAM memory.

e To achieve additional error < €||Al|l;, both take time
poly(k,1/e,log(1/9); the first takes time linear in
max(m,n) and the second takes time independent of m
and n.

39

The CUR Approximate Decomposition

Given a matrix A € R™*™ we want an A’ =~ A s.t.:

1. A’ = CUR, where C is an m X ¢ matrix consisting of
c randomly picked columns of A, R is an r X n matrix
consisting of r randomly picked rows of A and U isac X r
matrix computed from C, R,

2. C', U, and R can be constructed after making a small constant
number of passes through the whole matrix A from disk,

3. U can be constructed using additional RAM space and time
that is either O(m + n) or O(1), independent of m and n,

4. for every € > 0 and every k such that 1 < k < rank(A) we
can choose ¢ and r such that A’ satisfies

A=Al < lA = Aillp + €llAllp,

5. for every € > 0 and every k such that 1 < k < rank(A) we
can choose ¢ and r such that A’ satisfies

A= A'||, < 1A= Agll, + € || All 5
and thus we can choose ¢ and r such that

|4 — A, < ellAll,.

40

The LinearTimeCUR Algorithm

Goal: Given a matrix A € R™*™ we wish to compute
an approximate CUR decomposition in a constant
number of passes through the data and additional
space and time that is either O(m + n) or O(1),
independent of m and n.

LINEARTIMECUR Algorithm Summary.

e Randomly sample ¢ columns of A according to {qj};"zl and
rescale by 1/, /¢g;, to foom C € R™*°.

e Randomly sample r rows of A according to {p;}, ; and
rescale by 1/, /7p;, to form R € R"™"; sample the same r
rows of C' and rescale by 1/, /7p;, to form ¥ € R"™°.

e Compute the SVD of CTC € R*% say CTC =
c T
> o (C)y'y"
T
o Let ® = Zle %ytyt and define U = ®¥7T ¢ Re*",
Tt

A (T

41

42

The LinearTimeCUR Algorithm, Cont.

LINEARTIMECUR Algorithm

Input: A € R™X"™ rckeZ st. 1<r<m, 1<c<n, and
1<k<m1n(r c) {pz} 1st p; > 0and > ;" p; =1, and {qj}

Output: C € R™*¢ U € R°*", and R € R™*",

e Fort =1 toc,
— Pickjr € {1,...,n}withPrj: = k] =qr. k=1,...,n.
— Set C(B) = A(jt)/\/cq—-_
e Compute CTC and its SVD; say CTC = 3¢, 62(C)yly
o If 01 (C) = 0 then let k = maz{k': 0,/(C) # 0}.
e Fort =1tor,
— Pickiz € {1,...,m}withPr[iz = k] =pg, k=1,...,m.
T Set Ry = Ay /TPy
= Set ¥y = Cliy/VPiy-
o Letd =" — ytytT and define U = &0
9t (C)

e Return C, U, and R.

t tT

43

Implementation of Linear (and constant)y Time
CUR Algorithms

e Can calculate nearly optimal {p;}.-, and {g;}
in one pass and O(c+ r) space and time.

n
j=1

e (C and R can then be constructed in one additional
pass and O(mc + nr) additional space and time.

— C and R not explicitly constructed; in second pass compute nearly
optimal 7; to construct W in O(w) space and time and construct W
in third pass with O(cw) space and time

e Computing CTC and the SVD of CTC requires
O(mc? + ¢3) additional space and time.

— Computing WTW and the its SVD of WX W requires O(cw? +c?).

e U can be constructed in the same second pass and
O(cr) space and time.

e ® can be constructed with O(c?k) space and time.

e U can be computed using O(c?r) space and time.

e Overall, O(m + n) additional space and time.
— Overall, O(1).

44

Intuition for the CUR algorithms

HipH; A is an approximation to A, but it can't be
computed (in this form) in a small number of passes
with sublinear additional space and time.

Can HpH; A be approximated?

Lemma. [DKM] Let Sgr be the row sampling matrix and Dp
the associated diagonal rescaling matrix. Then:

e CUR = H HT(DgrSg)TDrSrA = H,HT A
* |[A~CUR|¢ < ||A—HpH Alle+||HyHy A~ CUR|¢
o |HH{A-CUR|, = |H[A-HTA|

Note: Sampling probabilities are not nearly optimal
with respect to approximating the product H} A; thus
must use Markov's inequality.

Note: Can view CUR as a “dimensional reduction”
technique.

Note: Given A, a database of vectors, and ¢, a
query vector, compute A'q = CU Rq rather than Ag
to identify nearest neighbors.

45

The LinearTimeCUR Algorithm, Cont.

%A
R™ R™
1% U
{v"} A {u'} H(=Ug)
R" R™ =
{n'}
R g sg ©
v’ {y"}
R" RC
~— — Y (=Vo)
Dp &,Do,cTC

HyH/A~ A

R™ S -
H A~ H_ A

RC

46

The LinearTimeCUR Algorithm, Cont.

A
R™ R™
S S
C C><R R
R¢ R”

47

The LinearTimeCUR Algorithm, Cont.

Theorem. [DKM] Suppose A € R™*™ and let C,
U, and R be constructed from the LINEARTIMECUR
algorithm by sampling ¢ columns of A with nice
probabilities {q;};_, and r rows of A with nice
probabilities {p;};-,. Let n. =1+ +/(8/8.)log(1/é.)
and let § = 6, + 6. If ¢ = Q(kn?/e*) and
r = Q(k/d2%€%), then

|A—CUR|p < A= Akllp+ €[Allg

both in expectation and with high probability. If
c=Q(n?/e*) and r = Q(k/5%€?), then

|A—=CURIl, < [[A— Aill, + € || All

both in expectation and with high probability.

Proof. Submultiplicitivity; then apply approximate
SVD results and approximate matrix multiplication
results (for non-optimal probabilities). O

48

CONSTANTTIMECUR, Algorithm Summary.

e Similar to the LINEARTIMECUR algorithm, except that
singular values and singular vectors of C*'C' are approximated
by those of WTW; say WIW = 3¢ . o2(W)ztzt"

- T _ - -
o let ® = Zle Wztzt and define U = ®¥7T € R*".
%A
R"™ R™
1% U
' 4 {uY i
R"™ R™ R™
{R%}
R Sp S C 2w
UwT {24}
R" R¢ R€
v &Do,wTw Z(=Vyy)
Dp
W S
RY RY

49

50

CoNSTANTTIMECUR . Algorithm
Input: A € R™X" rckecztst. 1<r<m 1<c<mnadl<Ekc<

min(7, c), {pi};-il st. p; > 0and 300 p; = 1, and {qj}
n _

Output: U € REX" and a “description” of C € R™*€ and R € R" X",

. S =
S.L. : 0 and
. 1 q] -

e Fort=1toc,
— Pick jt € {1,...,71,} with Pr[jt:k:] = qf, E = 1,...,n and save
{(jtaqj't):t:L...,c}.

— Set C(t) = A(Jt)/\/%

2
e Choose {71'7;}::7;1 s.t. m; > 0, Z:’; m; = 1, and m; > B’ ‘C(z)‘ /||C||%1 with
B < 1.
e Fort=1tow,
- Pickig € 1,...,mwith Priy = k] =mp, k=1,...,m.
— Set W(t) = C(,Lt)/ /wﬂ-’it'
T
e Compute WTW and its SVD; say wlw = 25:1 a%(W)ztzt :
e Ifa ||-|| 7 bound is desired
— Sety = O(e2/k),
Else if a ||-|[9 bound is desired
— Set vy = O(e2).
e Let [be the index of the smallest singular value such that ot2(W) > ||W||%1
e Keep min{l, k} singular values o4(W') and their corresponding singular vectors
l
t
e Fort=1tor,
- Pick iy € {1,...,m} with Prliy = k] = pg, k = 1,...,m and save
{(’it,pit) tt=1,... ,7’}.
— Set R(t) = A(Zt)/ /’)"p,ét.
T SV = Oy /Py
T
5 l 1 t_t - T =
o let® = _ z"z" and define U = ®U~ .
)
e Return U, ¢ column labels {(jt’qjt) :t =1,...,c}, and r row labels {(it’pit) :
t=1,...,7r}. 51

e (If an explicit solution is to be computed then) using the column and row labels compute
C and R and return C, U, and R.

The ConstantTimeCUR Algorithm, Cont.

Theorem. [DKM] Suppose A € R™ ™ and let C, U, and
R be constructed from the CONSTANTTIMECUR algorithm by
sampling c columns of A with probabilities {q;};_, (and then
sampling w rows of C with probabilities {m;};, to construct
W) and r rows of A with probabilities {p;}.-,. Assume that

2 NE
pi > B |Aw[* /1A a5 > e [AD| /1Al and = >
B’ |C(z~)|2/ ||C||§;, for some positive constants B3, B, 8 < 1.

Let §,¢ > 0. If v = O(e’/k), ¢ = Q(k°/€®), w =
Q (k°/€®), and r = Q (k*/€?), then with probability > 1 —§:

|A—COR|| < l1A— Aule+cll Al

If v = @(62), c = 9(1/64), w = 9(1/66), and r
Q (k?/€*), then with probability > 1 — §:

HA _ CURH2 < |A = Aglly, + €|l Allp

52

Comparison of SVD and CUR

The SVD of Ais: A=>"_, at(A)ut’UtT.
A = Zle at(A)utvtT = UpXiV,! gives us the
“optimal” rank k approximation and requires O(m+

n) space if k= O(1).

CUR achieves weaker bounds which are similar in
spirit.

Think of the SVD as rotation followed by a rescaling
followed by a rotation.

Think of the CUR decomposition as more like A
followed by AT followed by A.

53

Summary of CUR

Two algorithms to compute an approximation to A which is
the product of three smaller matrices, C', U, and R, each of
which may be computed rapidly.

Let A" = CUR; both algorithms have provable bounds for
the error matrix A — A’.

In the first algorithm, ¢ = O(1) columnsof A and r = O(1)
rows of A are randomly chosen to form C and R, repsectively;
U calculated from C and R.

|A - A'||5 < |lA — Agll + poly(k,1/c) || Al g holds in
expectation and with high probability for both & = 2, F' and
forallk =1,...,rank(A).

By appropriate choice of k: ||[A — A'||, < e [|A]lp
Implementable without storing the matrix A in RAM, provided
two passes over the matrix and O(m + n) additional RAM
memory.

The second algorithm is similar except that it approximates the
matrix C' by randomly sampling O(1) rows of C; additional
error, three passes, and constant additional RAM memory.
To achieve additional error < €||A||z, both take time
poly(k,1/e,1/8); the first takes time linear in max(m, n)
and the second takes time independent of m and n.

54

Lower Bounds

How many queries does a sampling algorithm need to
approximate a given function accurately with high probability?

/BY03 proves lower bounds for the low rank matrix

approximation problem and the matrix reconstruction problem.

— Any sampling algorithm that with high probability finds a
good low rank approximation requires 2(m + n) queries.

— Even if the algorithm is given the exact weight distribution
over the columns of a matrix it will still require Q(k/e*)
queries.

— Finding a matrix D such that ||A — D|| < €||A]|
requires 2(mmn) queries and that finding a D such that
|A — DJ||, < €||A]| » requires €2(m + m) queries.

Applied to our results:

— The LINEARTIMESVD algorithm is optimal with respect
to ||-|| » bounds; see also DFKVV99.

— The CONSTANTTIMESVD algorithm is optimal with
respect to ||-|| bounds up to polynomial factors; see
also FKV98.

— The CUR algorithm is optimal for constant e.

55

Review of Linear Programming

Primal LP: maxcz s.t. Pxr <b, x > 0.
Def: x is a feasible solution if Px < b and z > 0.

Dual LP: minby s.t. PTy > ¢, y > 0.

Note: The feasible region is a convex polyhedron.

L~ T T =

56

Sampling Linear Programs
Theorem. [DKM] Let P € R™*", b € R" and consider:

Pr=> PY;<b 0<z;<c. (1)

1=1

Suppose Q is a random subset of {1,2,...n}, with |Q| = q,
formed by picking elements of {1,2,...n} with probability

C; ‘P(Z)
N

where N = " ¢ ‘PW‘. Letn =1+ /Slog(1/3). IfLP
(1) is feasible, then with probability at least 1 — §

pi = Prliy =1] =

1 N
S =P <o+ 1. 0<zi<e
ico 9P vV

is feasible as well. If LP (1) is infeasible, then with probability at
least 1 — ¢

is infeasible as well.

Proof. Uses matrix multiplication ideas and also LP duality. O

57

Sampling Linear Programs, Cont.

o If {Px <b,0<xz; <c;} is feasible then V i:

Thus, {]53'5 <b+6bl,, 0<x < c;} is also feasible.
o If {Px <b, 0<uxz; <c} is infeasible then 3 i:

bz_5b¢ ~ 1 J
(PZ);

Thus, {]55: <b-—06bl,, 0<z; < c;} is also infeasible.

® Note: If ¢; = 1 for all 4, then >0 | ‘P(i) < Vn||P|| g

and the induced LP becomes

1 .
S —PYz; <b n\/§||P||F1r 0<az<l.
q

icg 9Pi

58

Other Perturbed LP Results

Renegar '94, '95:

— Developing a complexity theory for real data.

— Customary measures of size were replaced with condition

measures.

— Consider: Pz < b, x > 0; to decide whether d = (P, b)
is a consistent system of constraints, consider the minimal

relative perturbation of d.

Spielman and Teng '01: “smoothed complexity”

— Studying the performance of algorithms under small random

perturbation of their inputs.
— Consider: max z'z s.t. Pz < b.
— Replace it with: max z'z st. (P + o0G)z < b.

We perturb Pz to PZ and then choose a new b.

We replace Pz < b with PZ < b + §b.

0b can be quite large.

59

Review of Max-Cut

Let G = (V, E) be a graph with |V| = n and edge
weights w : E — R.

For S C V let cut(S, S) be those edges with exactly
one end in S and the weight w(S,.S) be the sum of
the weights of the edges.

The maximum weight cut problem or the Max-Cut
problem is: Find a cut (or the weight of a cut) with
maximum weight over all possible cuts.

Max-Cut is N P-hard, both in general and for dense
graphs.

There exists a constant «, bounded away from 1,
such that (assuming P # N P) it is not possible to
a-approximate Max-Cut; thus, there is no PTAS for
Max-Cut.

A polynomial time approximation scheme (PTAS)
is an algorithm that for every fixed ¢ > 0 achieves
an approximation ratio of 1 — € in time poly(n).

60

Review of Approximating Max-Cut and
Max-2-CSP Problems

Goemans and Williamson ‘94:
— 0.878-approximation algorithm.
Arora, Karger, and Karpinski '95: en? additive error

— Linear Programming and Randomized Rounding.
2
- 0 (nO(l/e)> time.

De La Vega '96: en? additive error

— Combinatorial methods.

- O(n221/€2+0(1) time.

Frieze and Kannan '96: en? additive error (¥)

— Efficient version of Szemerédi’s Regularity Lemma.
— PTAS for dense graph problems like Max-Cut.

— O(poly(1/e)n?% + B(1/¢€)) time.

Goldreich, Goldwasser, and Ron '96: en? additive error
— Query complexity and property testing methods.
- 0(1/65) sampling complexity.

— Constructing the Max-Cut takes O(n) time.
Frieze and Kannan '97: en? additive error (*)

— New method to approximate matrices.
— PTAS for all dense Max-CSP problems.

2
20(1/€%) time,
Alon, De La Vega, Kannan, and Karpinski '03: en?2 additive error (*)
— PTAS for all dense Max-CSP problems.

O (bﬁgjﬁ) sampling complexity for Max-Cut, etc.

De La Vega and Karpinski '04:
— PTAS in subdense Max-2-CSP problems, e.g., graphs with Q(n2/ log n) edges.

61

Approximation Algorithm for Max-Cut

Let G = (V, E) be a graph with adjacency matrix A:
e MAX-CUT [A] = max,cqo,1}» xTA(fn — x).
e Reduce this to MAX-CUT |CTUR)|.

e Reduce this to testing a constant number of integer
programs IP(u,v) , (u,v) € Qa for feasibility.

e Relax IP(u,v) to LP(u,v).

e Sample from LP(u,v) to construct LPg(u,v).

— Use LP Sampling Theorem.
— Check each of the large but constant number of
these LPs for feasibility in constant time.

62

Approximation Algorithm for Max-Cut,
Cont.

Our new result: Approximate the Max-Cut of G =
(V, E) up to additive error

en | Allp = eny/2|E]

in constant time and space after reading the graph
three times. We need to keep O(1/€?°) entries from
the adjacency matrix of GG.

Note: Particularly useful for graphs with
nonuniformities and heterogenities.

e Unweighted graphs: better as |E| /n? decreases.

e Weighted graphs: en||A|| versus en*W,qz.

Also: Approximate Max-2-CSP problems in a similar
manner and with similar error.

63

