ADAHESSIAN: An Adaptive Second Order
Optimizer for Machine Learning

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer,

Michael W. Mahoney
A | 'J

September 2020

;.

g qal"
“riselal

UC Berkeley

One year ago: fall 2019

Making Deep Learning Revolution Practical Through
Second Order Methods

Michael W. Mahoney

ICSI and Department of Statistics
University of California at Berkeley

Joint work with Amir Gholami, Zhewei Yao, and many others to be mentioned.

Second Order Methods Conclusions

“Machine learning is high performance “If I had asked people what they wanted, they

computing's first killer app for consumers” - K

NVIDIA CEO 2015 WOUId have Sald

Large Scall .
Training * faster SGD algorithms,

Second-order methods

(use Hessian info as well e better worst-case Fonvergence rates,

as gradient info) for: * faster wall-clock times,

° Efficiency/inefficiency of e petter AutoML methods, ...”
training: SGD, KFAC, and
other 2nd order methods Second order methods

° Adversarial examples: ¢ sometimes do that,
smoothing out ML objectives, A)
using 2nd order methods ¢ sometimes don’t do that,

° Quantizing large models: * more often lead to improvements---in timing/
using outlier metrics derived P .
from e oot mothads robustness/reproducibility/understanding---

for more interesting and non-trivial reasons ...)

Three years ago: fall 2017

SECOND ORDER MACHINE LEARNING

Michael W. Mahoney

ICSI and Department of Statistics

UC Berkeley —
|
OUTLINE CONCLUSIONS: SECOND ORDER MACHINE LEARNING

o Second order methods
o A simple way to go beyond first order methods
@ Machine Learning’s “Inverse” Problem o Obviously, don't be naive about the details

e FLAG n' FLARE

o Combine acceleration and adaptivity to get best of both worlds

@ Your choice:

o 1st Order Methods: FLAG n’ FLARE, or

. . o Can aggressively sub-sample gradient and/or Hessian
o disentangle geometry from sequence of iterates gg y ple g /

o Improve running time at each step

o 2nd Order Methods: Stochastic Newton-Type Methods e Maintain strong second-order convergence

e “simple” methods for convex

“ " @ Apply to non-convex problems
o “more subtle” methods for non-convex pply p!

e Trust region methods and cubic regularization methods
o Converge to second order stationary point
o Quite promising “preliminary results” in ML/DA applications

Michael W. Mahoney (UC Berkeley) Second order machine learning 2/96 Michael W. Mahoney (UC Berkeley) Second order machine learning 96 / 96

Executive Summary

« We propose ADAHESSIAN, a novel second order optimizer that achieves new

SOTA on various tasks:

o CV:Upto 5.55% better accuracy than Adam on ImageNet
o NLP: Upto 1.8 PPL better result than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo

« ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs

o Anovel temporal and spatial smoothing scheme to reduce Hessian noise across iterations

AdaHessian Motivation

« Choosing the right hyper-parameter for optimizing a NN

training has become a (very expensive) dark-art!
Problems with existing first-order solutions:
o Brute force hyper-parameter tuning

o No convergence guarantee unless taking many iterations

o Even the choice of the optimizer is a hyper-parameter!*

Task CV NLP Recommendation System

Optimizer Choice | SGD AdamW Adagrad

*BTW, not obvious if you just do popular things, e.g., ResNet50 training on ImageNet, since years of industrial scale (i.e., .
+ brute force) hyperparameter tuning and building systems for SGD-based methods mean those methods do well ... b5

SGD Based Training

w TN

2

-
js3

—_

[]=
Q

O
=t
S

3

A o= OF, (w") | - |
e, S b

1616
conv6/7

1616
r v2/3
convl conv2/ FC&softmax

wl,

N OR

First and Second Order Methods

General parameter update formula: _ A
W41 = W — e AWy

First Order Method Second Order Method

Awy = gt

« At the origin, the first derivative of y =4x2, y =x2, y =0.1 x2 is all the same: 0
« The second derivative give more information: 8 , 2, and 0.2 respectively

First and Second Order Methods

General parameter update formula: wWy4 1 = W — ntA”wt

—k— Gradient Descent Starting Point

Gradient Descent with Momentum

First Order Method so 88 e ————— Second Order Method

Awy = gt

First and Second Order Methods

General parameter update formula: §,, 1 = 0; — n; A6,

First Order Method Second Order Method

\)
|

How about the middle part?

Af; = H,?gt — gt Al = Ht_lgt

Instead of using fully first or second order method, the following
formula is used: A, = Ht_kgh 0<k<I1

* For convex problem, since g;rHt_kgt > 0, Ht_kgt IS a descent
direction.

« For simple problems, computing Ht_k Is not a problem and it can
be done by an eigen-decomposition.

« However, for large scale machine learning problems (e.g., DNNSs),

forming/storing Hessian are impractical.

10

Second Derivative (Hessian)

oF

w . O0’E
min £ (w) ZCOSt (w, ;) Gradient: S R Hessian: 302 © RIWIXIW]

Tw©® w

11

Opening the Black Box with Second Derivative

Loss Lndscape Gradient: g € R4 Hessian: H € Rdxd

I | Fm e = oy
| I.'l.- 1 ‘
I [m
Output: ¢ /~' i = | .
. L | = -2
/ n
LayerN K .'-_. .
4 s "m n
LayerN-1 \/ i -.'-_. o
‘\ | ..L..
\ == u :
\ i -.'I.-
\ |
Layer2 \ i 8
. n "=
\ ||] " .l.
° % u | ||
Layer 1 ' . "u_u
\ = a L....
Input:

E Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

! Z.Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

i Z.Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine
i Learning, 2020.

E Code: https://github.com/amirgholami/PyHessian

Using Hessian Diagonal

1 AN
N
Forming the Hessian is infeasible: _'\\.‘;\ z : =
S
\\I\\\ =
For ResNet50 (with 24M parameters) _\';\.:\ L
\-.\
o A
Hessian is a matrix of size 24Mx24M g = Diag(H) = . ‘:\-.‘:
AL 5N
\\.\\\.}
What if we approximate the Hessian? \\'\;’.:.\
) i\l.\.\
m = " \\.l:\
Idea: Use Hessian diagonal . o .
oy N
\-/

Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix. Applied numerical mathematics, 57(11-12):1214— 1229, 2007

Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

Z. Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian, Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine
Learning Workshop, 2020.

Code: https://github.com/amirgholami/PyHessian 13

ADAHESSIAN algorithm is very simple and as follows:

u VAN :]
. \l.\\
W41 = W — Utmt/vt, hR T .
SEN
t t—1 s
A =B) 2 By s :
my — 1 7 5 C TN n
o 61 l\..l\ .

o (= B) 55, By DD R
t 1 — 55 ; \.\.:.\

Where D is the Hessian diagonal - ‘!-:_:.\

O%F
fone o |[Wx|W|
Hessian: 92 eER ”

Different Optimizers

Table 1: Summary of the first and second moments used in dif-
ferent optimization algorithms for updating model parameters
(wey1 = wi — ymy/ve). Here B1 and (B2 are first and second
moment hyperparameters.

Optimizer my Vg

SGD [36] Brimi—1 + (1 — S1)8t 1

Adagrad [16] g Vil 8igi
Adam [21] (1-p1) 12:_%{1 Bi g \/(1—ﬂ2) Z]:_:—:ﬂlé y g
RMSProp [40] g VBt + (1 - B

ADAHESSIAN

Q-8 3¢, B g (1-B2) ¢, B D) D
1-B¢ 1-BE

' H Robbins and S Monro. A stochastic approximation method. The annals of mathematical statistics, 1951 :
i J Duchi, E Hazan, Y Singer. Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011 -
i D Kingma and J Ba. Adam: A method for stochastic optimization, ICLR 2015 :
i TTieleman and G Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude, 2012 |
' Z Yao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719 :

15

Is computing H ™! practical? Of course not ...

For ResNet50:

« # Parameters is 24M. |
lg| = 24M ~ 100 MB
|[H| = 24Mx24M ~ 2.4 PB

Can we:
compute H?
store H?
compute H~1?

Of course not ...

16

How can we get Diagonal without explicitly forming the Hessian?

Randomized Numerical Linear Algebra (RandNLA):
D = diag(H) = E[2 © (Hz)], 2~ Rademacher(0.5)

H Diag(H) z H 7
HEEEE -1 1] I RE
HOOEEN [1] [] IIII
EECEE =0 ~H © ENCEEE
HEENN 1 || 1w BE

HEEN [1] HEEREN

Diag(H) = E[z O (Hz)]
s.t. z ~ Rademacher(0.5)

L D5aR o DOROPOIOS S At 2 oD D RITEDr O 1T edond o1 a et PRI TR M eaIee o e e e 17

How can we get Diagonal without explicitly forming the Hessian?

The remaining question is how to compute /), ?

» Hessian-vector product:

g’ Og’ 0 g’
g Z: g z{gT—Z:LZ:HZ.

00 00 00 00

 Randomized numerical linear algebra (RandNLA):

D =diag(H) =E[z ® (Hz)], =z~ Rademacher(0.5)

« Getting Hessian information takes roughly 2X backprop time!

i Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

E Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018. !

i Z.Yao", A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine

i Learning, 2020. '

E Code: https://github.com/amirgholami/PyHessian : 18

ADAHESSIAN algorithm is very simple and as follows:

Wt41 = Wt — ntmt/vt, Without Second Order Momentum
¢ i 81 —+— With Second Order Momentum
m, — (1 — 51) 27:1 1 Zgz'
t — _ nt) 6
1 -5 .
1— t gt—ip p. S
Uy = ot .
1-5 g

Where D is the Hessian diagonal f(z) = 2% + 0.1z sin(z)

19

Spatial Smoothing

 We also incorporate spatial averaging to smooth out the stochastic Hessian
noise across different iterations

3 x 3 Convolution

Gradient: g € RY Hessian: H € R9*d

1
I é.l.. - a a —— Block size 1
-I i

\
I :\ \ Ll ——— Block size 32
\ =
Block Size: 9 ul ..-.%'-._ o

u
—
N
n

._.
u
)

C
.
7
()
T
. . . o = 125
Attention Module Dim: 64 i ..'-.. - S
" B .. 9 10.0
L] . " a
b, [a)
n-. 8 7.54
~ | ©
o | '-..- g 5.0 1
E & ~ . b g 25
[a) = =
% n u 5 0 2000 4000 6000 8000 10000 12000 14000 16000
L . Iteration
Machine Translation Task
Block Size: 64

on IWSLT’14 Dataset
Examples of averaging for convolution (top, for
CV) and multi-head attention (bottom, for NLP) -

Variance Reduction

Incorporating momentum for both first and second order term:

ez

(1—B1)> 1 B s

) Ut =
1— B

Estimated Diagonal Hessian

=
~
[6,]

=
w
o

[
N
w

~
w
1

w
o
1

N
w
1

o
1

(1—B2) >, 5§_iDz'Dz'.

1 —— Wwith Moving Average

—— Without Moving Average

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

1 — B4

21

AdaHessian Algorithm

Algorithm 1: ADAHESSIAN

Require: Initial Parameter: 6

Require: Learning rate: 7

Require: Exponential decay rates: 31, (32
Require: Block size: b

Require: Hessian Power: £

Set: go = 0, Dy =0

for t =1,2,...do // Training Iterations
g; <— current step gradient

D; < current step estimated diagonal Hessian
Update m;, v; based on Eq. 10

O = 0i—1 — 77’Ut_kmt

22

Important Points for Empirical Results

« What hyper-parameters we modified in the experiments:
o Fixed learning rate

o Space averaging block size

» What hyper-parameters we did not modify in the experiments:
o Learning rate schedule
o Weight decay
o Warmup schedule
o Dropout rate

o First and second order momentum coefficients, £,/

23

Results on Image Classification

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Higher is better

Dataset Cifar10 ImageNet
ResNet20 ResNet 32 ResNet18
SGD [36] 92.08 + 0.08 93.14 +-0.10 70.03
Adam [19] 90.33 £ 0.13 91.63 = 0.10 64.53
AdamW [22] 91.97 = 0.15 92.72 £+ 0.20 67.41
ADAHESSIAN 92.13 +£0.18 93.08 £0.10 70.08

__

Results on Machine Translation

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Higher BLEU score is better

IWSLT14 WMT14

small base

SGD 28.57 £ .15 26.04
AdamW [24] 35.66 = .11 28.19

ADAHESSIAN 35.79 + .06 28.52

Model

__

Results on Language Modeling

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Lower perplexity is better

Model PTB Wikitext-103
Three—-Layer Six—-Layer
SGD 5909 + 3.0 78.5
AdamW [24] 542+ 1.6 20.9
ADAHESSIAN 51.5+1.2 19.9

__

Results for SqueezeBERT on GLUE

The finetuning result for SqueezeBERT on GLUE benchmark
Higher accuracy is better

RTE MPRC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm Avg.

AdamW™ [20] 71.8 89.8 89.4 920 905 894 82.9 82.3 86.01

AdamW* 79.06 90.69 90.00 91.28 90.30 89.49 82.61 81.84 86.91
ADAHESSIAN 80.14 9194 90.59 91.17 8997 89.33 82.78 82.62 87.32

i landola FN, Shaw AE, Krishna R, Keutzer KW. SqueezeBERT: What can computer vision teach NLP about efficient neural networks?. arXiv preprint arXiv:2006.11316, 2020. !
! ZYao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719, 2020. 1 27

Results on Recommendation Systems

Only learning rate and space averaging block size are tuned for ADAHESSIAN

Recommendation System

79.5 1
79.0 1
> Criteo Ad Kaggle Dataset Test Accuracy
© 78.5 -
S AdaGrad 79.135
< 7801
v Adagrad Training ADAHESSIAN 79.167
77.5 -] Adagrad Testing
—— AdaHessian Training
77.0 - ---AdaHessian Testing
0 50000 100000 150000 200000 250000 300000

Iteration

Speed Comparison with SGD

* An important advantage is the not only AdaHessian achieves SOTA results but its per iteration

cost is comparable to SGD

« Computing Hessian diagonal at every step results in only 2x (theoretically) and 3.2x

(empirically) overhead compared to SGD

— This computation can be delayed to reduce this overhead down to 1.2x

Hessian Comp. Freq. 1 2 3 4 5
Theoretical Cost (xSGD) 2 X 1.5x 1.33x 1.25x 1.2x
ResNet20 (Cifar10) 92.13 £.08 9240+ .04 92.06+.18 9217+ .21 92.16 % .12
Measured Cost (xSGD) 2.42 % 1.71% 1.47 x 1.36x 1.28x
Measured Cost (X Adam) 2.27 X% 1.64 x 1.42% 1.32% 1.25%

__

29

Robustness to Hyperparameter Tuning

Robustness to Learning Rate:
« AdaHessian still achieves acceptable performance even when scaling learning
rate by10x, while ADAM diverges after just 6x scaling.

LR Scaling 0.5 1 2 3 4 5 6 10

AdamW 3542 +.09 3566+.11 3537+.07 3518+.07 34.79+.15 1441+£1325 041+£ .32 Diverge
ADAHESSIAN 3533 £.10 35.79+.06 3521+.14 3474+.10 3419+.06 33.78+.14 3270 +.10 3248 + .83

Result on IWSLT14.

__

Robustness to Spatial Averaging (Block Size)

Attention Module Dim: 64 A Hessian
EEREERERERE 3 an...

E L 1 g

a8 F T l-._....

£ T

'-_.
Block Size: 64 s,
Block Size 1 2 4 8 16 % 4 128

ADAHESSIAN 35.67 £.10 35.66 £.07 3578+ .07 3577 +.08 35.67+.08 3579+.06 3572+ .06

35.67 = .11

Result on IWSLT14. The BLEU score of AdamW is 35.66
Choice of block size does not drastically change the
performance.

I
__

Some related Work

« Much work has shown benefits of first-order methods, but in practice SGD is very brittle.

O

O

Jin C, Ge R, Netrapalli P, Kakade SM, Jordan MI. How to escape saddle points efficiently, 2017
Duchi JC, Bartlett PL, Wainwright MJ. Randomized smoothing for stochastic optimization, 2012
Lee JD, Simchowitz M, Jordan MI, Recht B. Gradient descent only converges to minimizers, 2016

Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S. and Bengio, Y., ldentifying and

attacking the saddle point problem in high-dimensional non-convex optimization, 2014

Xu P, Roosta F, Mahoney MW, Second-Order Optimization for Non-Convex Machine Learning: An
Empirical Study, 2018

32

Some related Work

« Second-Order methods have been extensively explored in scientific computing, but they have not
yet been been used as much as first-order methods for ML. Recent work includes:
o Schaul T, Zhang S, LeCun Y. No more pesky learning rates, 2013
o Bollapragada R, Mudigere D, Nocedal J, Shi HJ, Tang PT. A progressive batching L-BFGS method for

machine learning, 2018
o Martens J, Grosse R. Optimizing neural networks with kronecker-factored approximate curvature, 2015

o Roosta-Khorasani F and Mahoney MW, Sub-Sampled Newton Methods I: Globally Convergent
Algorithms, 2016

o Wang S, Roosta-Khorasani F, Xu P, Mahoney MW. GIANT: Globally improved approximate Newton
method for distributed optimization, 2018

o Pilanci, Mert and Wainwright, Martin J, Newton sketch: A near linear-time optimization algorithm with

linear-quadratic convergence, 2017

o Bottou L, Curtis FE, Nocedal J. Optimization methods for large-scale machine learning, 2018 33

Some related Work: pyHessian

PYHESSIAN
N
7 Zm'gt(“'“"") Gradient: o8 e RIVI
i=1 ow

o)
u H ol ol 0 1150- -0 [To

| i

min E(w) =
w]

-~

W W) o5 L%

Introduction

PyHessian is a pytorch library for Hessian based analysis of neural network models. The library enables computing
the following metrics:

* Top Hessian eigenvalues
* The trace of the Hessian matrix
e The full Hessian Eigenvalues Spectral Density (ESD)

Compute lots of Hessian

information for:

* Training (ADAHESSIAN)

* Quantization (HAWQ,
QBERT)

* |nference

Also for:

» Validation: loss landscape

« Validation: model robustness
« Validation: adversarial data

« Validation: test hypotheses

34

Conclusions

« We propose ADAHESSIAN, a novel second order optimizer that achieves new
SOTA on various tasks:

o CV:Upto 5.55% better accuracy than Adam on ImageNet
o NLP: Upto 1.8 PPL better result than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo

« ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs

o Anovel temporal and spatial smoothing scheme to reduce Hessian noise across iterations

1 ZYao, A Gholami, S Shen, M Mustafa, K Keutzer, M. W. Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719

\ Z.Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

1 Z.Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine

1 Learning, 2020.

! Code: https://github.com/amirgholami/PyHessian !
 Code: https://github.com/amirgholami/AdaHessian v 35

Thank You!

Please contact us if you have any questions:

{zheweiy, amirgh} @ berkeley.edu

mmahoney @ stat.berkeley.edu

Hessian tutorial: https://github.com/amirgholami/PyHessian/tree/master/pyhessian
AdaHessian tutorial: https://github.com/yaozhewei/analyze ada hessian

A
) Berkeley

UNIVERSITY OF CALIFORNIA

37

2.5 1

2.0 A1

1.5 1

Loss

1.0 1

0.5 A

0.0 A

Results on Image Classification

Training: ResNet20 on Cifarl0

— SGD
—— Adam
— AdamW
—— AdaHessian
20 40 60 80 100 120 140 160
Epoch

Training: ResNet18 on ImageNet with plateau decay

SGD

Adam
AdamWw
AdaHessian

20 40 60
Epoch

80

38

Results on Machine Translation

IWSLT14 WMT14
—— AdamW 7.5 4 — AdamW
91 —— AdaHessian ' —— AdaHessian
7.0 A
8 3.6 4.35 4
? % 6.5
o . | o
a‘ 7 3.5 5" 4.30 -
£ c 60
£ 6 £
° 3.4 - © 5.5 4.25 -
= =
5 -
T T T T 50 . 420 T T T T T
30 35 40 45 50 55 20 40 60 80 100 120
4 - 4.5 4
0 10 20 30 40 50 0 20 40 60 80 100 120
Epoch Epoch

39

Training PPL

Results on Language Modeling

PTB
700 - — AdamW
—— AdaHessian
600 A 40
500 A
35 A
400~ \\\M—’\’_J\'
300 - 301
200 1 25 ; ; ; . .
50 60 70 80 90 100
100 A
0 - T T T T T T
0 20 40 60 80 100

Epoch

Training PPL

Wikitext-103
16001 — AdamW
1400 - —— AdaHessian
1200 30
28 -
1000
26 -
800 - «AJV\/““\I\A/”\f/\\”\Af\
28 AN/ SNV
600 - s |
400 1 20 . . .
0.96 0.98 1.00
200 - le7
0 -
0.0 0.2 0.4 0.6 0.8 1.0
Steps le7

40

