
Practical neural network theory: from statistical
mechanics basics to heavy-tailed self regularization to

working with state of the art models

Michael W. Mahoney

ICSI, LBNL, and Dept of Statistics, UC Berkeley

http://www.stat.berkeley.edu/�mmahoney/

April 2023

(Joint work with Charles H. Martin, Yaoqing Yang, Ryan Theisen, Zhenyu Liao,

Amir Gholami, Liam Hodgkinson, and many others

Mahoney (UC Berkeley) Practical NN theory April 2023 1 / 9



Overview

Weight Analysis and Heavy-Tailed Self-Regularization

Phenomenological Approach to Statistical Mechanics of
Generalization

Using Heavy-Tailed Self-Regularization

Random Matrix Theory for Modern ML

Putting It All Together

Mahoney (UC Berkeley) Practical NN theory April 2023 2 / 9



Outline

1 Weight Analysis and Heavy-Tailed Self-Regularization

2 Phenomenological Approach to Statistical Mechanics of Generalization

3 Using Heavy-Tailed Self-Regularization

4 Random Matrix Theory for Modern ML

5 Putting It All Together

6 Conclusion



Statistical Mechanics Methods for Discovering
Knowledge from Production-Scale Neural Networks

Charles H. Martin∗ and Michael W. Mahoney†

Tutorial at ACM-KDD, August 2019

∗Calculation Consulting, charles@calculationconsulting.com
†ICSI and Dept of Statistics, UC Berkeley, https://www.stat.berkeley.edu/~mmahoney/

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 1 / 98



Outline
1 Prehistory and History

Older Background
A Very Simple Deep Learning Model
More Immediate Background

2 Preliminary Results
Regularization and the Energy Landscape
Preliminary Empirical Results
Gaussian and Heavy-tailed Random Matrix Theory

3 Developing a Theory for Deep Learning
More Detailed Empirical Results
An RMT-based Theory for Deep Learning
Tikhonov Regularization versus Heavy-tailed Regularization

4 Validating and Using the Theory
Varying the Batch Size: Explaining the Generalization Gap
Using the Theory: pip install weightwatcher
Diagnostics at Scale: Predicting Test Accuracies

5 More General Implications and Conclusions



Outline
1 Prehistory and History

Older Background
A Very Simple Deep Learning Model
More Immediate Background

2 Preliminary Results
Regularization and the Energy Landscape
Preliminary Empirical Results
Gaussian and Heavy-tailed Random Matrix Theory

3 Developing a Theory for Deep Learning
More Detailed Empirical Results
An RMT-based Theory for Deep Learning
Tikhonov Regularization versus Heavy-tailed Regularization

4 Validating and Using the Theory
Varying the Batch Size: Explaining the Generalization Gap
Using the Theory: pip install weightwatcher
Diagnostics at Scale: Predicting Test Accuracies

5 More General Implications and Conclusions



Statistical Physics & Neural Networks: A Long History

60s:
I J. D. Cowan, Statistical Mechanics of Neural Networks, 1967.

70s:
I W. A. Little, “The existence of persistent states in the brain,” Math.

Biosci., 1974.
80s:

I H. Sompolinsky, “Statistical mechanics of neural networks,” Physics
Today, 1988.

90s:
I D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, “Rigorous learning

curve bounds from statistical mechanics,” Machine Learning, 1996.
00s:

I A. Engel and C. P. L. Van den Broeck, Statistical mechanics of
learning, 2001.
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Hopfield model
Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” PNAS 1982.

Hopfield model:
Recurrent artificial neural network model
Equivalence between behavior of NNs with symmetric connections and the
equilibrium statistical mechanics behavior of certain magnetic systems.
Can design NNs for associative memory and other computational tasks

Phase diagram with three kinds of phases (α is load parameter):
Very low α regime: model has so so much capacity, it is a prototype method
Intermediate α: spin glass phase, which is “pathologically non-convex”
Higher α: generalization phase

But:
Lots of subsequent work focusing on spin glasses, replica theory, etc.

Let’s go back to the basics!
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Restricted Boltzmann Machines and Variational Methods

RBMs = Hopfield + temperature + backprop:
RBMs and other more sophisticated variational free energy methods

They have an intractable partition function.
Goal: try to approximate partition function / free energy.
Also, recent work on their phase diagram.

We do NOT do this.
Memorization, then and now.

Three (then) versus two (now) phases.
Modern “memorization” is probably more like spin glass phase.

Let’s go back to the basics!
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Some other signposts

Cowen’s introduction of sigmoid into neuroscience.
Parisi’s replica theory computations.
Solla’s statistical analysis.
Gardner’s analysis of annealed versus quenched entropy.
Saad’s analysis of dynamics of SGD.
More recent work on dynamics, energy langscapes, etc.

Lots more . . .
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Important: Our Methodological Approach
Most people like training and validating ideas by training.
We will use pre-trained models.

Many state-of-the-art models are publicly available.
They are “machine learning models that work” . . . so analyze them.
Selection bias: you can’t talk with deceased patients.

Of course, one could use these methods to improve training . . . we won’t.
Benefits of this methodological approach.

Can develop a practical theory.
(Current theory isn’t . . . loose bounds and convergence rates.)
Can evaluate theory on state-of-the-art models.
(Big models are different than small . . . easily-trainable models.)
Can be more reproducible.
(Training isn’t reproducible . . . too many knobs.)

You can “pip install weightwatcher”
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PAC/VC versus Statistical Mechanics Approaches (1 of 2)

Basic Student-Teacher Learning Setup:
Classify elements of input space X into {0, 1}
Target rule / teacher T ; and hypothesis space F of possible mappings
Given T for X ⊂ X , the training set, select a student f ∗ ∈ F , and evaluate how
well f ∗ approximates T on X
Generalization error (ε): probability of disagreement bw student and teacher on X
Training error (εt): fraction of disagreement bw student and teacher on X
Learning curve: behavior of |εt − ε| as a function of control parameters

PAC/VC Approach:
Related to statistical problem of convergence of frequencies to probabilities

Statistical Mechanics Approach:
Exploit the thermodynamic limit from statistical mechanics
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PAC/VC versus Statistical Mechanics Approaches (2 of 2)
PAC/VC: get bounds on worst-case results

View m = |X | as the main control parameter; fix the function class F ; and ask
how |εt − ε| varies
Natural to consider γ = P [|εt − ε| > δ]

I Related to problem of convergence of frequencies to probabilities
I Hoeffding-type approach not appropriate (f ∗ depends on training data)

Fix F and construct uniform bound P [maxh∈F |εt(h)− ε(h)| > δ] ≤ 2 |F| e−2mδ2

I Straightforward if |F| <∞; use VC dimension (etc.) otherwise
Statistical Mechanics: get precise results for typical configurations

Function class F = FN varies with m; and let m and (size of F) vary in
well-defined manner
Thermodynamic limit: m,N →∞ s.t. α = m

N (like load in associative memory
models).

I Limit s.t. (when it exists) certain quantities get sharply peaked around
their most probable value.

I Describe learning curve as competition between error (energy) and log
of number of functions with that energy (entropy)

I Get precise results for typical (most probably in that limit) quantities
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Rethinking generalization requires revisiting old ideas
Martin and Mahoney https://arxiv.org/abs/1710.09553

Very Simple Deep Learning (VSDL) model:
DNN is a black box, load-like parameters α, & temperature-like parameters τ
Adding noise to training data decreases α
Early stopping increases τ

Nearly any non-trivial model‡ exhibits “phase diagrams,” with qualitatively
different generalization properties, for different parameter values.

(a) Training/general-
ization error.

(b) Learning phases in
τ -α plane.

(c) Noisifying data and
adjusting knobs.

‡when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
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Remembering Regularization
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics (1990s): (this) Overtraining → Spin Glass Phase

Binary Classifier with N Random Labelings:

2N over-trained solutions: locally (ruggedly) convex, very high barriers, all unable to generalize
implication: solutions inside basins should be more similar than solutions in different basins
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Given N labeled data points
Imagine a Teacher Network T that maps data to labels
Learning finds a Student J similar to the Teacher T
Consider all possible Student Networks J for all possible teachers T

The Generalization error ε is related to the phase space volume Ωε of all possible
Student-Teacher overlaps for all possible J,T

ε = arccos R, R = 1
N J†T
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics Foundations:
Spherical (Energy) Constraints: δ(Tr [J2]− N)
Teacher Overlap (Potential): δ( 1

NTr [J†T]− cos(πε))
Teacher Phase Space Volume (Density of States):

ΩT (ε) =
∫
dJδ(Tr [J2]− N)δ( 1

NTr [J†T]− cos(πε))

Comparison to traditional Statistical Mechanics:
Phase Space Volume, free particles:

ΩE =
∫
dNr

∫
dNpδ

( N∑
i

p2i
2mi
− E

)
∼ V N

Canonical Ensemble: Legendre Transform in R = cos(πε):
actually more technical, and must choose sign convention on Tr [J†T], H

Ωβ(R) ∼
∫

dµ(J)e−λTr [J†T] ∼
∫
dqNdpNe−βH(p,q)
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Early Models: Perception: J,T N-dim vectors

Continuous Perception Ji ∈ R (not so intersting)
Ising Perception Ji = ±1 (sharp transitions, requires Replica theory)

Our Proposal: J,T (N ×M) Real (possibly Heavy Tailed) matrices
Practical Applications: Hinton, Bengio, etc.
Related to complexity of (Levy) spin glasses (Bouchaud)

Our Expectation:
Heavy-tailed structure means there is less capacity/entropy available for
integrals, which will affect generalization properties non-trivially
Multi-class classification is very different than binary classification

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 16 / 98



Student Teacher: Recent Practical Application
“Similarity of Neural Network Representations Revisited”
Kornblith, Norouzi, Lee, Hinton; https://arxiv.org/abs/1905.00414

Examined different Weight matrix similarity metrics
Best method: Canonical Correlation Analysis (CCA): ‖Y†X‖2F

Figure: Diagnostic Tool for both individual and comparative DNNs
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Student Teacher: Recent Generalization vs. Memorization
“Insights on representational similarity in neural networks with canonical correlation”
Morcos, Raghu, Bengio; https://arxiv.org/pdf/1806.05759.pdf

Compare NN representations and how they evolve during training
Projection weighted Canonical Correlation Analysis (PWCCA)

Figure: Generalizing networks converge to more similar solutions than memorizing
networks.
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Motivations: Theoretical AND Practical
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?
explicit/implicit regularization?
is / why is / when is deep better?
VC theory versus Statistical Mechanics theory?
. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?
can we use labels and/or domain knowledge more efficiently?
large batch versus small batch in optimization?
designing better ensembles?
. . .
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Motivations: towards a Theory of Deep Learning

DNNs as
spin glasses,
Choromanska
et al. 2015

Looks exactly
like old protein
folding results
(late 90s)

Energy Landscape Theory

Completely
different
picture
of DNNs

Raises broad questions about Why Deep Learning Works
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Motivations: regularization in DNNs?

ICLR 2017 Best paper
Large neural network models can easily overtrain/overfit on randomly
labeled data
Popular ways to regularize (basically minx f (x) + λg(x), with “control
parameter” λ) may or may not help.

Understanding deep learning requires rethinking generalization??
https://arxiv.org/abs/1611.03530

Rethinking generalization requires revisiting old ideas: statistical
mechanics approaches and complex learning behavior!!

https://arxiv.org/abs/1710.09553 (Martin & Mahoney)
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Motivations: stochastic optimization DNNs?
Theory (from convex problems):

First order (SGD, e.g., Bottou 2010)
larger “batches” are better (at least up to statistical noise)
Second order (SSN, e.g., Roosta and Mahoney 2016)
larger “batches” are better (at least up to statistical noise)
Large batch sizes have better computational properties!

So, people just increase batch size (and compensate with other parameters)
Practice (from non-convex problems):

SGD-like methods “saturate”
(https://arxiv.org/abs/1811.12941)
SSN-like methods “saturate”
(https://arxiv.org/abs/1903.06237)
Small batch sizes have better statistical properties!

Is batch size a computational parameter, or a statistical parameter, or what?
How should batch size be chosen?
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Set up: the Energy Landscape
Energy/Optimization function:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Train this on labeled data {di , yi} ∈ D, using Backprop, by minimizing loss L:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)

EDNN is “the” Energy Landscape:
The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {di , yi} ∈ D
Pass the data through the Energy function EDNN multiple times, as we run
Backprop training
The Energy Landscape§ is changing at each epoch

§i.e., the optimization function that is nominally being optimized
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Problem: How can this possibly work?

Expected

Highly non-convex?

Observed

Apparently not!

It has been known for a long time that local minima are not the issue.
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Problem: Local Minima?

Duda, Hart and Stork, 2000

Solution: add more capacity and regularize, i.e., over-parameterization
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Motivations: what is regularization?

(a) Dropout. (b) Early Stopping.

(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are many¶—is regularization.
¶https://arxiv.org/pdf/1710.10686.pdf
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Basics of Regularization

Ridge Regression / Tikhonov-Phillips Regularization

Ŵx = y

x =
(
ŴTŴ + αI

)−1
ŴTy

{ Moore-Penrose pseudoinverse (1955)
Ridge regularization (Phillips, 1962)

min
x
‖Ŵx− y‖22 + α‖x̂‖22 familiar optimization problem

Softens the rank of Ŵ to focus on large eigenvalues.

Related to Truncated SVD, which does hard truncation on rank of Ŵ

Early stopping, truncated random walks, etc. often implicitly solve
regularized optimiation problems.
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How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)
+ α

∑

l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.
What we do:

Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.
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Lots of DNNs Analyzed
Question: What happens to the layer weight matrices WL?

(Don’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.

Two other small models:
3-Layer MLP
Mini AlexNet

Conv2D  MaxPool Conv2D MaxPool       FC1 FC2 FC

Wide range of state-of-the-art pre-trained models:
AlexNet, Inception, etc.
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Matrix complexity: Matrix Entropy and Stable Rank

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(e) MLP3 Entropies. (f) MLP3 Stable Ranks.

Figure: Matrix Entropy & Stable Rank show transition during Backprop training.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 34 / 98



Matrix complexity: Scree Plots

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Initial Scree Plot. (b) Final Scree Plot.

Figure: Scree plots for initial and final configurations for MLP3.
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Matrix complexity: Singular/Eigen Value Densities

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2i .
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ESD: detailed insight into WL
Empirical Spectral Density (ESD: eigenvalues of X = WT

L WL)

import keras
import numpy as np

import matplotlib.pyplot as plt

…

W = model.layers[i].get_weights()[0]

…

X = np.dot(W, W.T)

evals, evecs = np.linalg.eig(W, W.T)

plt.hist(X, bin=100, density=True)
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ESD: detailed insight into WL

Empirical Spectral Density (ESD: eigenvalues of X = WT
L WL)

Eopch 0:
Random
Matrix

Eopch 36:
Random
+ Spiles

Entropy decrease corresponds to:
modification (later, breakdown) of random structure and
onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N ×M random matrix, with elements Wij ∼ N(0, σ2mp).

Then, the ESD of X = WTW, converges to a deterministic function:

ρN(λ) := 1
N

M∑

i=1
δ (λ− λi )

N→∞−−−−→
Q fixed





Q
2πσ2mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

λ± = σ2mp

(
1± 1√

Q

)2
Q = N/M ≥ 1.
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Random Matrix Theory 102’: Marchenko-Pastur

(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.

Important points:
Global bulk stats: The overall shape is deterministic, fixed by Q and σ.
Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT
Go beyond the (relatively easy) Gaussian Universality class:

model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗
∼ λ−(aµ+b)

PL
∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Fitting Heavy-tailed Distributions

Figure: The log-log histogram plots of the ESD for three Heavy-Tailed random
matrices M with same aspect ratio Q = 3, with µ = 1.0, 3.0, 5.0, corresponding to
the three Heavy-Tailed Universality classes (0 < µ < 2 vs 2 < µ < 4 and 4 < µ).
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Non-negligible finite size effects

(a) M = 1000,N = 2000. (b) Fixed M. (c) Fixed N.

Figure: Dependence of α (the fitted PL parameter) on µ (the hypothesized
limiting PL parameter).
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Heavy Tails (!) and Heavy-Tailed Universality (?)

Universality: large-scale properties are independent of small-scale details
Mathematicians: justify proving theorems in random matrix theory
Physicists: derive new phenomenological relations and predict things
Gaussian Universality is most common, but there are many other types.

Heavy-Tailed Phenomenon
Rare events are not extraordinarily rare, i.e., are heavier than Gaussian tails
Modeled with power law and related functions
Seen in finance, structural glass theory, etc.

Heavy-Tailed Random Matrix Theory
Phenomenological work by physicists (Bouchard, Potters, Sornette, 90s)
Theorem proving by mathematicians (Auffinger, Ben Arous, Burda, Peche, 00s)
Universality of Power Laws, Levy-based dynamics, finite-size attractors, etc.
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Heavy-Tailed Universality: Earthquake prediction
“Complex Critical Exponents from Renormalization Group Theory of Earthquakes . . . ” Sornette et al. (1985)

Power law fit‖ of the regional strain ε (a measure of seismic release) before the
critical time tc (of the earthquake)

dε
dt = A + B(t − tc)m

(a) (b)

Figure: (a) Cumulative Beniolf strain released by magnitude 5 and greater
earthquakes in the San Francisco Bay area prior to the 1989 Loma Prieta
eaerthquake. (b) Fit of Power Law exponent (m).

‖More sophisticated Renormalization Group (RG) analysys uses complex critical exponents, giving log-peripdic corrections.
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Heavy-Tailed Universality: Market Crashes
“Why Stock Markets Crash: Critical Events in Complex Financial Systems” by D. Sornette (book, 2003)

Simple Power Law

log p(t) = A + B(t − tc)β

Complex Power Law (RG Log Periodic corrections)

log p(t) = A + B(t − tc)β + C(t − tc)β(cos(ωlog(t − tc)− φ)

(a) Dow Jones 1929 crash (b) Universal parameters, fit to RG model
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Heavy-Tailed Universality: Neuronal Avalanches
Neuronal avalanche dynamics indicates different universality classes in neuronal cultures; Scienfic Reports 3417 (2018)

(c) Spiking activity of cultured neurons

(d) Critical exponents, fit to scalaing model
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