ADAHESSIAN: An Adaptive Second Order
Optimizer for Machine Learning

Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, Michael Mahoney

Executive Summary

We propose ADAHESSIAN, a novel second order optimizer that achieves new
SOTA on various tasks:

o CV:Upto 5.55% better results than Adam on ImageNet

o NLP: Up to 1.8 PPL better results than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo
ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs
o Anovel exponential moving average which smooths Hessian noise across iterations

o Anew variance reduced estimate of the Hessian diagonal

Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

ADAHESSIAN Motivation

» Choosing the right hyper-parameter for optimizing a NN

training has become a dark-art!
Problems with existing first-order solutions:

o Brute force hyper-parameter tuning

o No convergence guarantee unless taking many iterations

o Even the choice of the optimizer is a hyper-parameter!

Task Cv NLP Recommendation System

Optimizer Choice | SGD AdamW Adagrad

Second Order

* A major source of problems arise from the fact that first-order methods do not

consider curvature information

* Question: Can we incorporate this information to guide training?

First and Second Order Methods
General parameter update formula: Ht—l—l — 0, — ntA‘gt

First Order Method Second Order Method

Al = g, Ay = Ht_lgt

First and Second Order Methods
General parameter update formula: Ht—l—l — 0, — ntA‘gt

First Order Method — ~ §} Second Order Method

R 0 R —k— Gradient Dtit out Moeu V B — T 1
Aby=H;ge =gt - " ; A0y = Hy " gt

~/— Gradient Descent with Momentum
—— ADAHESSIAN

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5

The trajectory Xof optimizing:

flz,y) = z* + 10y 6

Second Derivative (Hessian)

Gradient: T e RIWI Hessian: % c RIWIXxIW]

1

W W]

“w©® w

Second Derivative (Hessian)

Gradient: T e RIWI Hessian: % c RIWIXxIW]

1

Forming the Hessian is computationally

infeasible:

. . (W W
For ResNet50 with 24M params Hessian is

a matrix of size 24Mx24M

But what if we just approximate the

Hessian?

W

Using Hessian Diagonal

Forming the Hessian is computationally
infeasible:

For ResNet50 with 24M params Hessian is
a matrix of size 24Mx24M

But what if we just approximate the

Hessian?

Idea: Use Hessian diagonal

Variance Reduction

* For every iteration, the extra cost is one more backprop as compared to SGD
method.

* How can we control the variance?

10

Variance Reduction

* For every iteration, the extra cost is one more backprop as compared to SGD
method.

« How can we control the variance?
o Incorporating momentum for both first and second order term:

- (1—51) Zle g o — (1-B2) Zle BY'D;D;
¢ = =4 : - .

—— Without Moving Average
T —— with Moving Average

-
~
w

=
w
o

-
N
w

100 4

~
w
1

u
o
1

Estimated Diagonal Hessian

N
w

o
L

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

11

Variance Reduction

* For every iteration, the extra cost is one more backprop as compared to SGD
method.

* How can we control the variance?

o Incorporating momentum for both first and second order term.
o Using blocks to compute the average diagonal approximation:

'Corresponding di- J
e agonal elements

4
4

—— Block size 1

[
~
w

—— Block size 32

—
u
o

Layer N (

jun
N
v

Layer N-1

Layer 2 .
\
\
Layer 1 \

—
o
IS)

~
v
1

Estimated Diagonal Hessian
w
<)

Backward Propagation

N
w
1

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

12

Important Points for Results

« What hyper-parameters we modified in the experiments:

o Learning rate

o Space averaging block size

« What hyper-parameters we did not modify in the experiments:
o Learning rate schedule
o Weight decay
o Warmup schedule
o Dropout rate

o First and second order momentum coefficients, £41 /442

13

Results on Image Classification

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Higher is better

Dataset Cifar10 ImageNet
ResNet20 ResNet 32 ResNetl18
SGD [36] 92.08 £+ 0.08 93.14 + 0.10 70.03
Adam [19] 90.33 £+ 0.13 91.63 £ 0.10 64.53
AdamW [22] 91.97 = 0.15 92.72 £+ 0.20 67.41
ADAHESSIAN 92.13+0.18 93.08 +0.10 70.08

1
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Results on Machine Translation

Only learning rate and space averaging block size are tuned for ADAHESSIAN

Higher is better

IWSLT14 WMTI14

Model small base

SGD 28.45 26.04
AdamW [22] 35.60 28.19

ADAHESSIAN 35.87 28.52

1
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Results on Language Modeling

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Lower is better

PTB Wikitext-103

Model .
ode Three—-Layer Six-Layer

SGD 59.7 78.5
AdamW [22] 53.2 20.9

ADAHESSIAN 514 19.9

Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

79.5 1

79.0 A

Accuracy

77.5 A

77.0 1

Results on Recommendation System
Only learning rate and space averaging block size are tuned for ADAHESSIAN

Recommendation System

78.5 1

78.0

Criteo Ad Kaggle Dataset Test Accuracy
AdaGrad 79.135
1 Adagrad Training ADAHESSIAN 79.167

Adagrad Testing
—— AdaHessian Training
--- AdaHessian Testing

0

50000 100000 150000 200000 250000 300000
Iteration

1
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Speed Comparison with SGD

* An important advantage is the not only AdaHessian achieves SOTA results but its per iteration

cost is comparable to SGD
« Computing Hessian diagonal at every step results in only 2x overhead compared to SGD

— This computation can be delayed to reduce this overhead down to 1.2x

Delayed Steps 0 1 2 3 4
ResNet20 (Cifar-10) 92.13 £ .08 92.404.04 92.06+.18 92.17+.21 92.16 £0.12
Transformer (IWSLT14) 35.87 35.90 35.89 35.75 35.75
Per-iteration Cost (X SGD) 2% 1.5x 1.33x 1.25x% 1.2x

1
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Conclusions

We propose ADAHESSIAN, a novel second order optimizer that achieves new
SOTA on various tasks:

o CV:Upto 5.55% better results than Adam on ImageNet

o NLP: Up to 1.8 PPL better results than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo
ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs
o Anovel exponential moving average which smooths Hessian noise across iterations

o Anew variance reduced estimate of the Hessian diagonal

19
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Thank youl!

There is also a poster on AdaHessian.

Please contact us if you have any questions:

{zheweiy, amirgh} @ berkeley.edu

) Berkeley

UNIVERSITY OF CALIFORNIA 20

21

Robustness Study

Robust to LR:

X Default LR 0.5 1 2 3 4 5

AdamW 3548 35.60 35.28 3478 13.75 0.5
ADAHESSIAN 35.36 3587 35.12 3495 34.11 33.32

Result on IWSLT14.

2
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Robustness Study

* Robustto LR
* Robust to Space Averaging Block Size:

Block Size 2 4 8 16 32 64 128
ADAHESSIAN 35.72 35.60 35.83 35.70 35.87 35.66 35.62

Result on IWSLT14. The BLEU score of AdamW is 35.60.

2
Z Yao, A Gholami, S Shen, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning (arXiv:2006.00719)

Diagonal Relaxation

« A possible solution is to use the diagonal of the Hessian:

A Ht_lgt — A = Dt_lgta Dy = diag(H;)
« How do we compute piz?

o using Hessian-Free Method and RNLA.

Diag(H) = E[z O (Hz)]
s.t. z ~ Rademacher(0.5)
24

Is #/T—1 practical?

For ResNet50:

* # Parameters is 24M. !
* |g| =24M ~ 100 MB

* |H| = 24Mx24M ~ 2.4 PB

Can we:

* compute H? o

« store H? 9= H
« compute #r-17?

25

Instead of using fully first or second order method, the following
formulais used: A, = H; ¥g,, 0<k <1

26

Instead of using fully first or second order method, the following
formulais used: A, = H; ¥g,, 0<k <1

T rr—k _
« For convex problem, since J; Ht g > 0, Ht kgt is a descent

direction.

27

Instead of using fully first or second order method, the following
formulais used: A, = H; ¥g,, 0<k <1

T rr—k _
« For convex problem, since J; Ht g > 0, Ht kgt is a descent
direction.
* For simple problems, computing Ht_k is not a problem and it can

be done by an eigen-decomposition.

28

Instead of using fully first or second order method, the following
formula is used: Af, = Ht_kgh 0<k<I1

* For convex problem, since ngt_kgt > O, Ht_kgt is a descent
direction.

* For simple problems, computing Ht_k is not a problem and it can
be done by an eigen-decomposition.

« However, for large scale machine learning problems (e.g. DNNs),

forming/storing Hessian are impractical.
29

Diagonal Relaxation

A possible solution is to use the diagonal of the Hessian:
Ay = D;%g;, 0<k<1, D;=diag(H,)

The remaining question is how to compute Dy ?

Hessian-vector product

Ogtv 89 70UV gt B
0~ o0t 55— pg V= HY
RandNLA:

D =diag(H) = E[z ® (Hz)], 2z~ Rademacher(0.5)

30

Diagonal Relaxation

A possible solution is to use the diagonal of the Hessian:
Ay = D;%g;, 0<k<1, D;=diag(H,)

The remaining question is how to compute Dy ?

* Hessian-vector product

g’ 89 (%_(99 B
0~ 90’9 55~ g5 V= HY

31

Diagonal Relaxation

A possible solution is to use the diagonal of the Hessian:
Ay = D;%g;, 0<k<1, D;=diag(H,)

The remaining question is how to compute Dy ?

* Hessian-vector product

g’ 89 (%_(99 B
0~ 90’9 55~ g5 V= HY

« Randomized numerical linear algebra (RNLA):
D =diag(H) = E[z ® (Hz)], 2z~ Rademacher(0.5)

32

lllustration of diagonal computation

RandNLA:
D =diag(H) =E|z ® (Hz)|, 2z~ Rademacher(0.5)

H Z
1 1| BE
HEN l
BN E
| BE
[1]

]
© HE

Diag(H) = E[z O (Hz)]
s.t. z ~ Rademacher(0.5)

33

Variance Reduction

Incorporating momentum for both first and second order term:

(1— B2) > i_ B5 ' DiD; |

) Zle Bi_igi

9 Ut =
1—p1

Estimated Diagonal Hessian

=
~
wu

=
(8]
o

=
N
[O,]

100 4

~
wv
1

(O]
o
1

N
(6]

o
1

1 —— with Moving Average

—— Without Moving Average

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

1 - B4

34

First and Second Order Methods
General parameter update formula: Ht—l—l — 0, — ntA‘gt

First Order Method Second Order Method

A@t _ Hfgt — g, How about the middle part? Aet _ Ht_lgt

35

Variance Reduction

* Incorporating momentum for both first and second order term:
« Using blocks to compute the average diagonal approximation.

'Corresponding di- d
e agonal elements

Layer N (

Layer N-1

Layer 2

Backward Propagation

Layer 1 \

36

Variance Reduction

Incorporating momentum for both first and second order term:
Using blocks to compute the average diagonal approximation.

17.5 A

._.
o
o

Estimated Diagonal Hessian

N
w
1

12.5 A

10.0 A

N
u
1

v
o
1

—— Block size 1

—— Block size 32

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

37

Loss

Results on Image Classification

Training: ResNet20 on Cifarl0

2.5 1
—— SGD
—— Adam

2.0 1 —— AdamW
—— AdaHessian

1.5

1.0 1

0.5 A

0.0 |

0 20 40 60 80 100 120 140 160

Epoch

Training: ResNet18 on ImageNet with plateau decay

SGD
Adam
Adamw

—— AdaHessian

0 20 40 60

Epoch

80

38

Results on Machine Translation

IWSLT14 WMT14
— AdamW 7.5 4 — AdamW
91 —— AdaHessian —— AdaHessian
7.0 A
8 4.35 A
a & 6.5
o] o)
= 7 -~ 4.30 1
2 2607
£ 64 £
o T 5.5- 4.25 -
= [
5 -
T T T T 5.0 7 420 T T T T T
35 40 45 50 55 20 40 60 80 100 120
4 4.5 A
0 10 20 30 40 50 0 20 40 60 80 100 120
Epoch Epoch

39

Results on Language Modeling

PTB

—— AdamW
—— AdaHessian

Training PPL

40

354

30 M

Training PPL

50 60 70 80

60 80
Epoch

Wikitext-103
—— AdamW
—— AdaHessian
30
28 A
2 TAN SN
24 'M/\W/V\-/WV\N\
22 A
20 T T T
0.96 0.98 1.00
le7
0.2 0.4 0.6 0.8 1.0
Steps le7

40

AdaHessian Algorithm

Algorithm 1: ADAHESSIAN

Require: Initial Parameter: 6

Require: Learning rate: n

Require: Exponential decay rates: 31, B2
Require: Block size: b

Require: Hessian Power: k

Set: gg = 0, 1_)0 =0

fort =1,2,... do // Training Iterations
g; < current step gradient

D, < current step estimated diagonal Hessian
Update m;, v; based on Eq. 10

0p =01 — 77?Jt_kmt

41

