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) Locally-biased analytics

You have BIG data and want to analyze a -waipart of it:
Solution 1:

. Cut out small part and use traditional methods

. Challenge: cutting out may be difficult a priori

Solution 2:

. Develop locally-biased methods for data-analysis

. Challenge: Most data analysis tools (implicitly or explicitly)

make strong local-global assumptions™

*spectral partitioning "wants” to find 50-50 clusters; recursive partitioning is of
interest if recursion depth isn't too deep; eigenvectors optimize global objectives, etc.



] Locally-biased analytics

Locally-biased community identification:

* Find a "community” around an exogenously-specified seed node

Locally-biased image segmentation:
* Find a small tiger in the middle of a big picture

Locally-biased neural connectivity analysis:

* Find neurons that are temporally-correlated with local stimulus

Locally-biased inference, semi-supervised learning, etc.:

* Do machine learning with a "seed set” of ground truth nodes, i.e.,
make predictions that "draws strength” based on local information



‘ Global spectral methods DO work well

(1) Construct a graph from
the data

(2) Use the second
eigenvalue/eigenvector of
Laplacian: do clustering,
community detection,
Image segmentation,
parallel computing, semi-
supervised/transductive
learning, etc.

Why is it useful?
(*) Connections with random walks and sparse cuts
(*) Isoperimetric structure gives controls on capacity/inference

(*) Relatively easy to compute



‘ Global spectral methods DON'T work well

(1) Leading nontrivial
eigenvalue/eigenvector
are inherently global
quantities

(2) May NOT be sensitive
to local information:

(*) Sparse cuts may be
poorly correlated with
second/all eigenvectors

QUES: Can we find a locally-biased analogue of the
usual global eigenvectors that comes with the good
properties of the global eigenvectors?

(*) Interesting local

region may be hidden to
global eigenvectors that
are dominated by exact (*) Connections with random walks and sparse cuts

orthogonality constraint. (x) This gives controls on capacity/inference

(*) Relatively easy to compute



)I Outline

Locally-biased eigenvectors

« A methodology to construct a locally-biased analogue of leading nontrivial
eigenvector of graph Laplacian

Implicit regularization ...

* ... in early-stopped iterations and teleported PageRank computations

Semi-supervised eigenvectors

* Extend locally-biased eigenvectors to compute multiple locally-biased
eigenvectors, i.e., locally-biased SPSD kernels

Implicit regularization ...
* ... in truncated diffusions and push-based approximations to PageRank

* ... connections to strongly-local spectral methods and scalable computation



‘I Outline

Locally-biased eigenvectors

« A methodology to construct a locally-biased analogue of leading nontrivial
eigenvector of graph Laplacian



‘ Recall spectral graph partitioning

The basic optimization

problem:
minimize
S.t.

el Lax
(x,x)p =1
(x,l)D :O

 Relaxation of:

) E(S, S)
AG) = B SV ol(3)

« Solvable via the eigenvalue

problem:
Lay = Aa(G)y

« Sweep cut of second eigenvector
yieldS‘

A2(G)/2 < ¢(G) < /82(G



. Geometric correlation and
‘_genemlized PageRank vectors

Can use this to define a geometric
notion of correlation between cuts:

< s, 1 >p=20
vol(T)vol(T 1+
ST ::V/ () (1) (Eﬁ%ﬁ"?&%ﬁ) < sp,s7 >p=1

< ST,SU >D= K(T,U)

Given a cut T, define the
vector:

Defn. Given a graph G = (V, E), a number o € (—00, A\2(G)) and any vector
s€ R" s 1Lp 1, a Generalized Personalized PageRank (GPPR) vector
is any vector of the form

Pas = (Lag — cyLKn)Jr Ds.



] Local spectral partitioning ansatz

Mahoney, Orecchia, and Vishnoi (2010)
Primal program:
minimize z! Loz max

s.t. <x,x>p=1 st

<x,8>H> K

Interpretation:

* Find a cut well-correlated with the
seed vector s.

« If s is a single node, this relaxes:
. E(S,S)
min —
Scv,ses,|S|1<1/k Vol(S)Vol(S)

Dual program:

a—B(1— k)

Lk, LKT
Loz alk, =P (VOI(T) T ol(T)
B3>0

Interpretation:

« Embedding a combination of scaled
complete graph K, and complete
graphs T and T (K; and Ky) - where
the latter encourage cuts near (T,T).




] Main results (1 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter a, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)
(4) Rank one solution is GPPR vector.



‘ Main results (2 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

Theorem: If x* is optimal solution to LocalSpect
(6,5,x), one can find a cut of conductance < 8\(6,5,x) in
time O(n Ig n) with sweep cut of x*.

Upper bound, as usual from
sweep cut & Cheeger.

Theorem: Let s be seed vector and k correlation
parameter. For all sets of nodes T s.t. k' i=<s,51>5° , we
have: ¢(T) = MG,5x) if xk =«', and ¢(T) = (k' /x)MG,s x)

if ' <x.

Lower bound: Spectral
version of flow-
improvement algs.




‘ Illustration on small gr'aphs

Haow R « Similar results if
we do local random
° walks, truncated

PageRank, and heat

: - . kernel diffusions.
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Illustration with general seeds

* Seed vector doesn't need to correspond to cuts.

* It could be any vector on the nodes, e.g., can find a cut "near” low-
degree vertices with s; = -(d.-d_,), ie[n].




] New methods are useful more generally

Mayji, Vishnoi,and Malik (2011) applied Mahoney, Orecchia, and Vishnoi (2010)

« Cannot find the tiger with global eigenvectors.
* Can find the tiger with the LocalSpectral method!



]I Outline

Implicit regularization ...

* ... in early-stopped iterations and teleported PageRank computations



PageRank and implicit regularization

Recall the usual characterization of PPR:
m(v,8) =vs+ (1 —y)Mn(y,s)
Ry=y(I-(1-y)M)™"

Compare with our definition of GPPR:

Defn. Given a graph G = (V, E), a number o € (—00, A\2(G)) and any vector
s€ R", s Lp 1, a Generalized Personalized PageRank (GPPR) vector

is any vector of the form

Pas = (La — aLKn)jL Ds.

Question: Can we formalize that PageRank is a regularized
version of leading nontrivial eigenvector of the Laplacian?



‘ Two versions of spectral partitioning

VP:
min. ! Loz

st. 'Lk x=1

l <x,1>p=0

R-VP:
min. 2! Lgx + \f(x)

s.t. constraints



‘ Two versions of spectral partitioning

VP: +— SDP:
min. z! Lax min. LgoX
st. a2'Lg x=1 st. Lk oX =1
l <z,1>p=0 l X =0
R-VP: R-SDP:

min. 2! Loz + \f(x) min. Lgo X + AF(X)

s.t. constraints s.t. constraints



! A simple theorem

Mahoney and Orecchia (2010) /AOdificaTion of the usual
F SDP : LeX 1 F(X SDP form of spectral to
( 177)' min ¢ T+ = ( ) have regularization (buft,

U on the matrix X, not the
st. TeX =1 vector x).

X =0

Theorem: Let G be a connected, weighted, undirected graph,
with normalized Laplacian L. Then, the following conditions
are sufficient for X* to be an optimal solution to (F,n)-SDP.

e X*=(VF) ' (n-(\*I —L)), for some \* € R,
o [oe X" =1,
o X*>0.



‘ Corollary

If Fy(X) = -logdet(X) (i.e., Log-determinant), then this
gives scaled PageRank matrix, with + ~ n

I.e., PageRank does two things:
* It approximately computes the Fiedler vector.

* It exactly computes a regularized version of the Fiedler
vector implicitly

(Similarly, generalized entropy regularization implicit in
Heat Kernel computations; & matrix p-norm regularization
implicit in power iteration.)



]I Outline

Semi-supervised eigenvectors

* Extend locally-biased eigenvectors to compute multiple locally-biased
eigenvectors, i.e., locally-biased SPSD kernels



] Semi-supervised eigenvectors

Hansen and Mahoney (NIPS 2013, JMLR 2014)

Eigenvectors are inherently global quantities, and the leading ones may
therefore fail at modeling relevant local structures.

GLOAALSPECTRAL [OCALSPFECTRAL GENERALIZED
LGCALSPECTRAL

e @ . "
minimize I’ Loz

minimize =z Loz minimize z' Lox
st 2 Pox =1 “t =z d Dor =1 T Dgx -
2 Dl =1 2 Dl =0 DX =0
I I .v". ":{‘ -8 “» ",'& I I'.J'):;.s -’ \o"..:

_ _ Locally-biased analogue of the Semi-supervised eigenvector
Generalized eigenvalue second smallest eigenvector. generalization of [HM2013]. This
problem. Solution is given by  Optimal solution is a generalization ~ objective incorporates a general
the second smallest of Personalized PageRank and can orthogonality constraint, allowing
eigenvector, and”ylelds a be computed in nearly-linear time us to compute a sequence of

Normalized Cut”. [MOV2012]. “localized eigenvectors”.

Semi-supervised eigenvectors are efficient to compute and inherit many
of the nice properties that characterizes global eigenvectors of a graph.



] Semi-supervised eigenvectors

Hansen and Mahoney (NIPS 2013, JMLR 2014)

GENERALIZED

.. LGCALSPECTRAL
This interpolates between very ’

localized solutions and the global minimize 17 Lz
eigenvectors of the graph Laplacian.

of r' iz~ . <«—— Norm constraint
 For K=_O, th|§ is the usual global +DeX — 0 «—— Orthogonality constraint
generalized eigenvalue problem. | _ _
- For k=1, this returns the local ¥ Dgs = % +—— Locality constraint
seed set.

Leading solution Seed vector

For y<0 , one we can compute the first \ /
semi-supervised eigenvectors using z! = c(La — v1Da)* Das Projection operator
local graph diffusions, i.e., personalized /
PageRank. 2 x (FF'(Lg — vDa)FFTy FF Dgs
» Approximate the solution using the
Push algorithm [ACLO6]. / \

« Implicit regularization characterization General solution
by [M010] & [GM14].

Determines the locality of the solution.

Convex for 7 © l OC.A'}{ ,',} )



‘ Semi-supervised eigenvectors

Small-world example - The eigenvectors having smallest eigenvalues
capture the slowest modes of variation.

/Probability of random edges

p=10, p— 0.01,
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U UL D
" N

) _1_4 :
» '.r"r‘ o~ \j_ ’

/ ¥ . .' 7 \\"','

r"' .‘l.} ¥ |I

‘ "1 1" ’ !

- .‘& ‘-" ,.

AN \ "’,.;' -

\I‘ T *,— '.. "l—" ‘,I
Global eigenvectors Global eigenvectors
T —



Semi-supervised eigenvectors

Small-world example - The eigenvectors having smallest eigenvalues
capture the slowest modes of variation.
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Correlation with seed
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‘ Semi-supervised eigenvectors

Hansen and Mahoney (NIPS 2013, JMLR 2014)
Ten labeled samples per class

One seed per class used in a downstream classifier Semi-supervised eigenvector scatter plots
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Many “real” applications:

* A spatially guided “searchlight” technique that compared
to [Kriegeskorte2006] account for spatially distributed

signal representations. —_—
* Large/small-scale structure in DNA SNP data in

population genetics

« Local structure in astronomical data

 Code is available at:
https://sites.google.com/site/tokejansenhansen/




) Local structure in SDSS spectra

Lawlor, Budavari, and Mahoney (2014)

* Data: x € R3%%, N = 500k are photon fluxes in # 10 A bins
* preprocessing corrects for redshift, gappy regions

* normalized by median flux at certain wavelengths

4000 6000 8000 4000 6000 8000

Red galaxy Blue galaxy



=

Galaxies along bridge
& bridge spectra

true positve rate (recall)

global: 4 eigs, ntrain = 150
ROC (AUC: 73.55%, EER: 34.95%)

—ROC s

- = =ROC rand. “\

0.5 1

true negative rate

local: 4 eigs, nseed = 100
ROC (AUC: 90.90%, EER: 15.52%)

—ROC N

- = =ROC rand. N

0.5 1

true negative rate

Local structure in SDSS spectra

Lawlor, Budavari, and Mahoney (2014)
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ROC curves for classifying
AGN spectra on top four
global eigenvectors (left) ;
and (right) top four semi-
supervised eigenvectors.



Implicit regularization ...
* ... in truncated diffusions and push-based approximations to PageRank

* ... connections to strongly-local spectral methods and scalable computation



] Push Algorithm for PageRank

1. xM =0, =(1-pBe;, k=1

2. while any r; > 7d (d; is the degree of node j)
The 3. x%D=x® 4 (r,—rdp)e
Push ( i
Tdip I =]
Method . ) T
TOS 4 S G rdp)/d i
) otherwise
5. K<+ k+1

Proposed (a variant) in ACLO6 (also MOx, JWO03) for Personalized PageRank
Strongly related to Gauss-Seidel (see Gleich’s talk at Simons for this)
Derived to show improved runtime for balanced solvers

Applied to graphs with 10M+nodes and 1B+edges



Widely-used for
empirical studies  has asingle one here
of "communities”

Used for “fast " s
PageRank" ;
approximation

Produces sparse
approximations to

PageRank!
Why does the "push “7 R
method" have such Newman's netscience N

379 vertices, 1828 nnz =

emplr'lcal UT'I'TY? "zero" on most of the nodes



] How might an algorithm be good?

Two ways this algorithm might be good.

« Theorem 1. [ACLO6] The ACL push procedure returns a
vector that is e-worst than the exact PPR and much faster.

* Theorem 2. [GM14] The ACL push procedure returns a
vector that exactly solves an L1-regulairzed version of the
PPR objective.

I.e., the Push Method does two things:
* It approximately computes the PPR vector.

* It exactly computes a reqularized version of the PPR
vector implicitly



) The s-t min-cut problem

Unweighted incidence matrix

Diagona
minimize HBXHC,1 = ZijeE Cij
subjectto xs=1,x=0,x> 0.

capacity matrix

Xi — Xj|

* Consider L2 variants of this objective & show how the
Push Method and other diffusion-based ML algorithms

implicitly regularize.



0 adi O
As=|ads A oadg
0 adif O

The localized cut graph

=3

Gleich and Mahoney (2014)

Connect s to vertices
in S with weight « - degree
Connect t to vertices
in S with weight o - degree

e _IS 0
Bs=|0 B 0
0 -5 e

Solve the s-t min-cut
minimize  ||BsX||g,

subjectto xs=1,x=0
x > 0.




s-t min-cut -> PageRank

Gleich and Mahoney (2014)

The PageRank vector z that solves
(aD+L)z = av

with v = dg/vol(S) is a renormalized
solution of the electrical cut computation: | 1->12 changes s-t
min-cut to “electrical

minimize HBSXHC(Q),Z flow” s-t min-cut
subjectto xs=1,x; =0.

Specifically, if x is the solution, then Proof

- - Square and expand

1 the objective into
X = |vol(S)z a Laplacian, then
0 apply constraints.



] Back to the push method

Gleich and Mahoney (2014)

Let x be the output from the push method
with0 < 8 <1, v=dg/vol(S),
p=1, and 7 > 0.

Set o = %, k = Tvol(S)/3, and let z; solve: _ Need for
normalization

S 2
minimize  3|Bsz|g.2 + #11DZ];

subjectto zs=1,z=0,2z> 0 ~ L1 regularization

; for sparsity

where z = {ZG].
0 Proof Write out KKT conditions

Then x = Dz /vol(S). Show that the push method
solves them. Slackness was “tricky”



) Conclusions

Locally-biased and semi-supervised eigenvectors

* Local versions of the usual global eigenvectors that come with
the good properties of global eigenvectors

« Strong algorithmic and statistical theory & good initial results in
several applications

Novel connections between approximate computation
and implicit regularization

Special cases already scaled up to LARGE data



