


Locally-biased analytics 

You have BIG data and want to analyze a small part of it: 

Solution 1: 
•   Cut out small part and use traditional methods 

•   Challenge: cutting out may be difficult a priori 

Solution 2: 
•   Develop locally-biased methods for data-analysis 

•   Challenge: Most data analysis tools (implicitly or explicitly) 
make strong local-global assumptions* 

*spectral partitioning “wants” to find 50-50 clusters; recursive partitioning is of 
interest if recursion depth isn’t too deep; eigenvectors optimize global objectives, etc. 



Locally-biased analytics 
Locally-biased community identification: 
•  Find a “community” around an exogenously-specified seed node 

Locally-biased image segmentation: 
•  Find a small tiger in the middle of a big picture  

Locally-biased neural connectivity analysis: 
•  Find neurons that are temporally-correlated with local stimulus 

Locally-biased inference, semi-supervised learning, etc.: 
•  Do machine learning with a “seed set” of ground truth nodes, i.e., 
make predictions that “draws strength” based on local information 



Global spectral methods DO work well 
(1) Construct a graph from 
the data 
(2) Use the second 
eigenvalue/eigenvector of 
Laplacian: do clustering, 
community detection, 
image segmentation, 
parallel computing, semi-
supervised/transductive 
learning, etc.  

Why is it useful? 

(*) Connections with random walks and sparse cuts 

(*) Isoperimetric structure gives controls on capacity/inference 

(*) Relatively easy to compute 



Global spectral methods DON’T work well 
(1) Leading nontrivial 
eigenvalue/eigenvector 
are inherently global 
quantities 
(2) May NOT be sensitive 
to local information: 
(*) Sparse cuts may be 
poorly correlated with 
second/all eigenvectors 

(*) Interesting local 
region may be hidden to 
global eigenvectors that 
are dominated by exact 
orthogonality constraint. 

QUES: Can we find a locally-biased analogue of the 
usual global eigenvectors that comes with the good 
properties of the global eigenvectors? 

(*) Connections with random walks and sparse cuts 

(*) This gives controls on capacity/inference 

(*) Relatively easy to compute 



Outline 
Locally-biased eigenvectors 
•  A methodology to construct a locally-biased analogue of leading nontrivial 
eigenvector of graph Laplacian 

Implicit regularization ... 
•  ... in early-stopped iterations and teleported PageRank computations 

Semi-supervised eigenvectors 
•  Extend locally-biased eigenvectors to compute multiple locally-biased 
eigenvectors, i.e., locally-biased SPSD kernels  

Implicit regularization ... 
•  ... in truncated diffusions and push-based approximations to PageRank 

•  ... connections to strongly-local spectral methods and scalable computation 
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Recall spectral graph partitioning 

•  Relaxation of: 
The basic optimization 
problem: 

•  Solvable via the eigenvalue 
problem: 

•  Sweep cut of second eigenvector 
yields: 



Geometric correlation and 
generalized PageRank vectors 

Given a cut T, define the 
vector: 

Can use this to define a geometric 
notion of correlation between cuts: 



Local spectral partitioning ansatz 

Primal program: Dual program: 

Interpretation: 
•  Find a cut well-correlated with the 
seed vector s. 

•  If s is a single node, this relaxes: 

Interpretation: 
•  Embedding a combination of scaled 
complete graph Kn and complete 
graphs T and T (KT and KT) - where 
the latter encourage cuts near (T,T). 

Mahoney, Orecchia, and Vishnoi (2010) 



Main results (1 of 2) 

Theorem: If x* is an optimal solution to LocalSpectral, 
it is a GPPR vector for parameter α, and it can be 
computed as the solution to a set of linear equations.  
Proof: 

(1) Relax non-convex problem to convex SDP 

(2) Strong duality holds for this SDP 

(3) Solution to SDP is rank one (from comp. slack.) 

(4) Rank one solution is GPPR vector. 

Mahoney, Orecchia, and Vishnoi (2010) 



Main results (2 of 2) 

Theorem: If x* is optimal solution to LocalSpect
(G,s,κ), one can find a cut of conductance ≤ 8λ(G,s,κ) in 
time O(n lg n) with sweep cut of x*.  

Theorem: Let s be seed vector and κ correlation 
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we 
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) 
if κ’ ≤ κ . 

Mahoney, Orecchia, and Vishnoi (2010) 

Lower bound: Spectral 
version of flow-
improvement algs. 

Upper bound, as usual from 
sweep cut & Cheeger. 



Illustration on small graphs 
•  Similar results if 
we do local random 
walks, truncated 
PageRank, and heat 
kernel diffusions. 

•  Linear equation 
formulation is more 
“powerful” than 
diffusions  

•  I.e., can access all  
α ε ( -∞, λ2(G) ) 
parameter values 



Illustration with general seeds 
•  Seed vector doesn’t need to correspond to cuts.   

•  It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n]. 



New methods are useful more generally 
Maji, Vishnoi,and Malik (2011) applied Mahoney, Orecchia, and Vishnoi (2010) 

•  Cannot find the tiger with global eigenvectors.   

•  Can find the tiger with the LocalSpectral method! 
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PageRank and implicit regularization 

Compare with our definition of GPPR: 

Question: Can we formalize that PageRank is a regularized 
version of leading nontrivial eigenvector of the Laplacian? 

Recall the usual characterization of PPR: 



Two versions of spectral partitioning 

VP: 

R-VP: 



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Corollary 
If FD(X) = -logdet(X) (i.e., Log-determinant), then this 

 gives scaled PageRank matrix, with t ~ η 

I.e., PageRank does two things: 

•  It approximately computes the Fiedler vector. 

•  It exactly computes a regularized version of the Fiedler 
vector implicitly!  

(Similarly, generalized entropy regularization implicit in 
Heat Kernel computations; & matrix p-norm regularization 
implicit in power iteration.) 
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Semi-supervised eigenvectors 
Eigenvectors are inherently global quantities, and the leading ones may 
therefore fail at modeling relevant local structures.  

Generalized eigenvalue 
problem.  Solution is given by 
the second smallest 
eigenvector, and yields a 
“Normalized Cut”. 

Locally-biased analogue of the 
second smallest eigenvector.  
Optimal solution is a generalization 
of Personalized PageRank and can 
be computed in nearly-linear time 
[MOV2012]. 

Semi-supervised eigenvector 
generalization of [HM2013]. This 
objective incorporates a general 
orthogonality constraint, allowing 
us to compute a sequence of 
“localized eigenvectors”. 

Semi-supervised eigenvectors are efficient to compute and inherit many 
of the nice properties that characterizes global eigenvectors of a graph. 

Hansen and Mahoney (NIPS 2013, JMLR 2014) 



Semi-supervised eigenvectors 

Norm constraint 
Orthogonality constraint 
Locality constraint 

This interpolates between very 
localized solutions and the global 
eigenvectors of the graph Laplacian. 
•  For κ=0, this is the usual global 
generalized eigenvalue problem. 
•  For κ=1, this returns the local 
seed set.     

Projection operator 

Seed vector 

Determines the locality of the solution.  

Convex for                                 . 

Leading solution 

General solution 

Hansen and Mahoney (NIPS 2013, JMLR 2014) 

For γ<0 , one we can compute the first 
semi-supervised eigenvectors using 
local graph diffusions, i.e., personalized 
PageRank. 
•  Approximate the solution using the 
Push algorithm [ACL06]. 
•  Implicit regularization characterization 
by [M010] & [GM14]. 



Semi-supervised eigenvectors 

Global eigenvectors Global eigenvectors 

Probability of random edges 

25 

Small-world example - The eigenvectors having smallest eigenvalues 
capture the slowest modes of variation. 



Semi-supervised eigenvectors 

Correlation with seed 

Semi-supervised eigenvectors 
Low correlation 

seed node 

Semi-supervised eigenvectors 
High correlation 

26 

Small-world example - The eigenvectors having smallest eigenvalues 
capture the slowest modes of variation. 



Semi-supervised eigenvectors 
Hansen and Mahoney (NIPS 2013, JMLR 2014) 

Many “real” applications:  
•  A spatially guided “searchlight” technique that compared 
to [Kriegeskorte2006] account for spatially distributed 
signal representations. 
•  Large/small-scale structure in DNA SNP data in 
population genetics 
•  Local structure in astronomical data 
•  Code is available at: 
https://sites.google.com/site/tokejansenhansen/ 

One seed per class 
Ten labeled samples per class 
used in a downstream classifier Semi-supervised eigenvector scatter plots 



Local structure in SDSS spectra 
Lawlor, Budavari, and Mahoney (2014) 

Red galaxy 

•  Data: x ε R3841, N ≈ 500k are photon fluxes in ≈ 10 Å bins 

•  preprocessing corrects for redshift, gappy regions 

•  normalized by median flux at certain wavelengths 

Blue galaxy 



Local structure in SDSS spectra 
Lawlor, Budavari, and Mahoney (2014) 

Galaxies along bridge 
& bridge spectra 

ROC curves for classifying 
AGN spectra on top four 
global eigenvectors (left) ; 
and (right) top four semi-
supervised eigenvectors. 
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Push Algorithm for PageRank 

  Proposed (a variant) in ACL06 (also M0x, JW03) for Personalized PageRank 
  Strongly related to Gauss-Seidel (see Gleich’s talk at Simons for this) 
  Derived to show improved runtime for balanced solvers 
  Applied to graphs with 10M+nodes and 1B+edges 

The 
Push 

Method!



Why do we care about “push”? 

1.  Widely-used for 
empirical studies 
of “communities” 

2.  Used for “fast 
PageRank” 
approximation 

  Produces sparse 
approximations to 
PageRank!  

  Why does the “push 
method” have such 
empirical utility?  

v has a single one here 

Newman’s netscience 
379 vertices, 1828 nnz 
“zero” on most of the nodes 



How might an algorithm be good? 

Two ways this algorithm might be good. 

•  Theorem 1. [ACL06] The ACL push procedure returns a 
vector that is ε-worst than the exact PPR and much faster. 

•  Theorem 2. [GM14] The ACL push procedure returns a 
vector that exactly solves an L1-regulairzed version of the 
PPR objective. 

I.e., the Push Method does two things: 

•  It approximately computes the PPR vector. 

•  It exactly computes a regularized version of the PPR 
vector implicitly!  



The s-t min-cut problem 

Unweighted incidence matrix 
Diagonal capacity matrix 

•  Consider L2 variants of this objective & show how the 
Push Method and other diffusion-based ML algorithms 
implicitly regularize. 



The localized cut graph 
Gleich and Mahoney (2014)   

Solve the s-t min-cut




s-t min-cut -> PageRank 
Gleich and Mahoney (2014)   

L1->L2 changes s-t 
min-cut to “electrical 

flow” s-t min-cut  



Back to the push method 
Gleich and Mahoney (2014)   

L1 regularization 
for sparsity 

Need for 
normalization 



Conclusions 

Locally-biased and semi-supervised eigenvectors 
•  Local versions of the usual global eigenvectors that come with 
the good properties of global eigenvectors 

•  Strong algorithmic and statistical theory & good initial results in 
several applications 

Novel connections between approximate computation 
and implicit regularization 

Special cases already scaled up to LARGE data 


