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Modeling data as matrices

Data

Matrices often arise with data: 
• n objects (“documents,” genomes, images, web pages), 
• each with m features,
• may be represented by an m x n matrix A.

Mathematics Algorithms



SVD and low-rank approximations

Basic SVD Theorem: Let A be an m x n matrix with rank ρ.  

• Can express any matrix A as  A = U Σ VT.  

• Truncate SVD of A: Ak = Uk Σk VkT, get “best” rank-k approximation. • Truncate SVD of A: Ak = Uk Σk VkT, get “best” rank-k approximation. 

Properties of truncated SVD:

• Used in data analysis via Principal Components Analysis (PCA) .

• Gives a very particular structure (think: rotate-rescale-rotate).

• Problematic w.r.t. sparsity, nonnegativity, interpretability, etc.



Problems with SVD/Eigen-Analysis

Problems arise: since structure in the data is not respected by 
mathematical operations on the data:   
• Sparsity - is destroyed by orthogonalization.
• Non-negativity - is a convex and not linear algebraic notion.• Non-negativity - is a convex and not linear algebraic notion.
• Interpretability - what does a linear combination of 6000 genes “mean.”
• Reification - maximum variance directions are just that.

Question: Do there exist  “better” low-rank matrix approximations. 
• “better” structural properties for certain applications.
• “better” at respecting relevant structure.
• “better” for interpretability and informing intuition.



CX and CUR matrix decompositions

Recall: Matrices are about their rows and columns.

Recall: Low-rank matrices have redundancy in their rows and columns.

Def: A CX matrix decomposition is a low-rank approximation explicitly expressed in 
terms of a small number of columns of the original matrix A (e.g., PCA = CC+A).

O(1) columns
O(1) rows

Carefully 
chosen U

terms of a small number of columns of the original matrix A (e.g., PCA = CC+A).

Def: A CUR matrix decomposition is a low-rank approximation explicitly expressed
in terms of a small number of columns and rows of the original matrix A.



Two CUR Theorems

Additive-Error Theorem: [DKM04] 

In O(m+n) space and time after two passes over the data, use ”column/row-norm 
sampling” to find O(k/ε2) columns and rows s.t.:

||A-CUR||2,F < ||A-Ak||2,F + ε||A||F2,F k 2,F F

Relative-Error Theorem: [DMM06] 

In O(SVD(Ak)) space and time, use ”subspace-sampling” to find O(k log(k)/ε2) columns 
and rows s.t.:

||A-CUR||F < (1+ε)||A-Ak||F



Previous CUR-type decompositions
Goreinov, Tyrtyshnikov, & 

Zamarashkin

(LAA ’97, …)

C: columns that span max volume

U: W+

R: rows that span max volume

Existential result

Error bounds depend on ||W+||2
Spectral norm bounds!

Berry, Stewart, & Pulatova

(Num. Math. ’99, TR ’04, … )
C: variant of the QR algorithm

R: variant of the QR algorithm

U: minimizes ||A-CUR||F

No a priori bounds

A must be known to construct U.

Solid experimental performanceU: minimizes ||A-CUR||F Solid experimental performance

Williams & Seeger

(NIPS ’01, …)
C: uniformly at random

U: W+

R: uniformly at random

Experimental evaluation

A is assumed PSD

Connections to Nystrom method

Drineas, Kannan & Mahoney

(TR ’04, SICOMP ‘06)
C: w.r.t. column lengths

U: in linear/constant time

R: w.r.t. row lengths

“Sketching” massive matrices

Provable, a priori, bounds

Explicit dependency on A – Ak
Drineas, Mahoney, & 
Muthukrishnan

(TR ’06)

C: depends on singular vectors of A. 

U: (almost) W+

R: depends on singular vectors of C

(1+ε) approximation to A – Ak
Computable in low polynomial time

(Suffices to compute SVD(Ak))



Three CUR Data Applications

Human Genetics: DNA SNP Data
• Biological Goal: Evaluate intra- and inter-population tag-SNP transferability.

Medical Imaging: Hyperspectral Image Data
• Medical Goal: Compress the data, without sacrificing classification quality.

Recommendation Systems: Customer Preference Data
• Business Goal: Reconstruct the data, to make high-quality recommendations.



CUR Data Application: Human Genetics

Recall, “the” human genome: 
• 30,000 – 40,000 genes
• 3 billion base pairs
• The functionality of 97% of the genome is unknown. 
• BUT: individual differences (polymorphic variation) at ≈ 1 b.p. per thousand.

(Joint work with P. Paschou and K. Kidd’s lab at Yale University) 

SNPs (Single Nucleotide Polymorphisms): 
• The most common type of genetic polymorphic variation.
• They are known locations at the human genome where two (out of A, C, G, T) 
alternate nucleotide bases (alleles) are observed.

SNPs

in
d
iv
id
ua
ls

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …



SNP Biology

SNPs carry redundant information: 
• Human genome is organized into block-like structure.
• Strong, but nontrivial, intra-block correlations.
• Can focus only on “tagging SNPs,” or tSNPs.

Different patterns of SNP frequencies/correlations in different populations 
(e.g., European, Asian, African, etc.): 
• Can track population histories and disease genes.
• Effective markers for genomic research.

International HapMap Project: 
• Create a haplotype map of human genetic variability.
• Map all 10,000,000 SNPs for 270 individuals from 4 different populations. 



SNP Pharmacology

Disease association studies: 
• Locate causative genes for common complex disorders (e.g., diabetes, heart disease).
• Identify association between affection status and known SNPs. 
• Don’t need: knowledge of function of the genes or etiology of the disorder.
• Investigate candidate genes in physical proximity with associated SNPs.• Investigate candidate genes in physical proximity with associated SNPs.

Develop the “next generation” of drugs: 
• “population-specific,” eventually “genome-specific,” not just “disease-specific”.

Funding: 
• HapMap project (~$100,000,000 from NIH, etc.).
• Funding also from pharmaceutical companies, NSF, the DOJ*, etc.

*Is it possible to identify the ethnicity of a suspect from his DNA?



Focus at a specific locus and 
assay the observed alleles.

SNP: exactly two alternate
alleles appear.

Two copies of a chromosome 
(father, mother)

C T

An individual could be:

- Heterozygotic (in our study, CT = TC)

SNPs

in
d
iv
id
ua
ls

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

- Heterozygotic (in our study, CT = TC)



C C

Focus at a specific locus and 
assay the observed alleles.

SNP: exactly two alternate
alleles appear.

Two copies of a chromosome 
(father, mother)

An individual could be:

- Heterozygotic (in our study, CT = TC)

SNPs

in
d
iv
id
ua
ls

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

- Heterozygotic (in our study, CT = TC)

- Homozygotic at the first allele, e.g., C



T T

Focus at a specific locus and 
assay the observed alleles.

SNP: exactly two alternate
alleles appear.

Two copies of a chromosome 
(father, mother)

An individual could be:

- Heterozygotic (in our study, CT = TC)

SNPs

in
d
iv
id
ua
ls

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

- Heterozygotic (in our study, CT = TC)

- Homozygotic at the first allele, e.g., C

- Homozygotic at the second allele, e.g., T



Encoding the SNP data ...

... as an m x n matrix A: 
• Exactly two “known” nucleotides (out of A,G,C,T) appear in each column.
• Two alleles might be both equal to the first one (+1), both equal to the 
second one (-1), or different (0).

Notes: 
• Redundancy in rows and columns <=> Redundancy in SNPs and people.
• SVD has been used (Lin and Altman), 
• but, then must get actual-SNPs/people from eigen-SNPs/people.

SNPs

in
d
iv
id
ua
ls

0  0  0  1  0 -1  1  1  1  0  0  0  0  0  1  0  1 -1 -1  1 -1  0  0  0  1  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1  0 0  0 

-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1  0  1 -1 -1  1 -1  1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1  1 -1 -1  1 

-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  1  0  0  1 -1 -1  1  0  0  0  0  1  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1  0 0  0 

-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1  1 -1  1  1  1  0 -1  1  0  1  1  0  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  0  0 0  0 

-1 -1 -1  1 -1 -1  1  1  1 -1  1 -1 -1 -1  1  0  1 -1 -1  0 -1  1  1  0  0  1  1  1 -1 -1 -1  1  0  0  0  0  0  0  0  0  0  1 -1 -1  1 

-1 -1 -1  1 -1 -1  1  0  1  0  0  0  0  0  1  0  1 -1 -1  0 -1  0  1 -1  0  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1 -1 -1  1 

-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1 -1  1 -1 -1  1  0  0  0  1  1  1  0  1 -1 -1  1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1  0 -1 -1  1



Yale dataset

• Samples from 2000 individuals from 38 different populations.

• Four genomic regions (PAH, SORCS3, HOXB,17q25), a total of ≈ 250 SNPs. 

The SNP data we considered

• Four genomic regions (PAH, SORCS3, HOXB,17q25), a total of ≈ 250 SNPs. 

HapMap dataset

• Samples from 270 individuals from 4 different populations (YRI, CEU, CHB, JPT)

• Four genomic regions (PAH, SORCS3, HOXB,17q25), a total of ≈ 1336 SNPs. 



-
African Americans

N > 50

N: 25 ~ 50

Druze

Jews, Yemenite

Samaritans

Adygei

Russians

Finns

DanesIrish European, Mixed

Chuvash

Chinese, Taiwan

Chinese, 

Han

Hakka Japanese

Atayal

Cambodians

Yakut
Kom

-

Zyrian

Khanty

Jews, Ashkenazi

Pima, Arizona

Pima, Mexico

Cheyenne

Maya

Yoruba Biaka

Mbuti
Ibo

Hausa

Jews, Ethiopian

Chagga

Africa

SW Asia

Jews, Yemenite

Europe

Atayal

Ami

E Asia

NW Siberia NE Siberia Oceania

Micronesians

Nasioi

N America S America

Ticuna

Surui

Karitiana



Predicting SNPs within a population

Split each population: training and test sets.

Goal: Given SNP information for all individuals in the training set AND for a 
small number of SNPs for all individuals (tagging-SNPs), predict all unassayed 
SNPs.

Note: Tagging-SNPs are selected using only the training set. Note: Tagging-SNPs are selected using only the training set. 

SNPs

individuals

“Training” set

chosen uniformly at random

(for a few individuals, we 
are given all SNPs)

SNP sample

(for all subjects, we are given a 
small number of SNPs)





Predicting SNPs across populations

Goal: Given all SNPs information for all individuals in population X AND a small 
number of tagging-SNPs for population Y, predict all unassayed SNPs for all 
individuals of Y. 

Note: Tagging-SNPs are selected using only the population X. 

(Training set: individuals in X; Test set: individuals in Y; A: contains all (Training set: individuals in X; Test set: individuals in Y; A: contains all 
individuals in both X and Y.)

SNPs

individuals in 
both X and Y

all individuals in population X. 

SNP sample

(for all individuals in both X and Y, we 
are given a small number of SNPs)







CUR Data Application: Hyperspectral Image Analysis

The Data: Images of a single object
(e.g., earth or colon cells) at many 
consecutive frequencies.

128 frequencies

(Joint work with M. Maggioni and R. Coifman lab at Yale University) 

The Goal: Lossy compression, data 
reconstruction, and classification
using a small number of samples 
(images and/or pixels). ca. 500 

pixels

ca. 500 
pixels

m x n x p tensor A or mn x p matrix A 





Look at the exact (65-th) slab.



The (65-th) slab approximately reconstructed

This slab was 
reconstructed
by approximate 
least-squares 
fit to the basis fit to the basis 
from slabs 41 
and 50, using 
1000 (of 250K) 
pixels/fibers.



Tissue Classification - Exact Data



Tissue Classification - Ns=12 & Nf=1000



CUR Data Application: Recommendation Systems

Problem: m customers and n products; Aij is the (unknown) rating/utility of 
product j for customer i.

Goal: recreate A from a few samples to recommend high utility products.
• (KRRT98): Assuming strong clustering of the products, competitive algorithms even with only 2 samples/customer.

• (AFKMS01): Assuming sampling of Ω(mn) entries of A and a gap requirement, accurately recreate A.• (AFKMS01): Assuming sampling of Ω(mn) entries of A and a gap requirement, accurately recreate A.

• Lots of applied work, especially at large internet companies!

Q: Can we get competitive performance by sampling o(mn) elements?

A: Apply the CUR decomposition:

products

customers

Customer sample

(guinea pigs)

Customer sample 

(purchases, small surveys)



Recommendation systems, cont’d

Recommendation Model Revisited:

• Given n products and m customers, each customer 
has an n x n {-1,+1}- “preference” matrix.

• Motivation: Utility is ordinal and not cardinal, so 
compare products; don’t assign utility values.

m 
customers

View each preference matrix as a vector, 
get an m x n2 matrix, ...

“preferences” (n2)

cu
st
om
er
s 
(m
)

all “preferences” are known 
for a few customersa few “preferences” are 

known for all customers

... and express this matrix in terms of its 
columns and rows! 

compare products; don’t assign utility values.

• Application: Did a user click on link A or link B?

n 
products

n 
products



Application to Jester Joke Recommendations

Use just the 14,140 “full” users who rated all 100 Jester jokes.

For each user, convert the utility vector to 100 x 100 pair-wise preference matrix.

Choose, e.g., 300 users (slabs), and a small number of comparisons (fibers).



Conclusion

CUR Low-Rank Matrix Decompositions: 
• Uses actual columns and/or rows.
• Useful if data have low-rank structure and other structure.
• Provable performance guarantees within ε of “best.”
• Performs well in practice on genetic, medical imaging, and internet data.• Performs well in practice on genetic, medical imaging, and internet data.

Scientific 
(expensive) 
data

Mathematics/Algorithms

Internet
(inexpensive)

data


