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Outline (and lessons)

1. Matrices and graphs are basic structures for modeling data, and
many algorithms boil down to matrix/graph algorithms.

2. Often, algorithms work when they “shouldn’t,” don’t work when
they “should,” and interpretation is tricky but often of interest
downstream.

3. Analysts tell stories since they often have no idea of what the
data “look like,” but algorithms can be used to “explore” or
“probe” the data.

4. Large networks (and large data) are typically very different than
small networks (and small data), but people typically implicitly
assume they are the same.
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Machine learning and data analysis,
versus “the database” perspective

Many data sets are better-described by graphs or
matrices than as dense flat tables
• Obvious to some, but a big challenge given the way that databases are
constructed and supercomputers are designed

• Sweet spot between descriptive flexibility and algorithmic tractability

• Very different questions than traditional NLA and graph theory/practice as
well as traditional database theory/practice

Often, the first step is to partition/cluster the data
• Often, this can be done with natural matrix and graph algorithms

• Those algorithms always return answers whether or not the data cluster well

• Often, there is a “positive-results” bias to find things like clusters



Modeling the data as a matrix

We are given m objects and n features describing the objects.

(Each object has n numeric values describing it.)

Dataset

An m-by-n matrix A, Aij shows the “importance” of feature j for object i.

Every row of A represents an object.

Goal

We seek to understand the structure of the data, e.g., the underlying
process generating the data.



Market basket matrices

Common representation for association rule mining in databases.

(Sometimes called a “flat table” if matrix operations are not performed.)

m
customers

n products

(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th
product purchased by

the i-th customer

Data mining tasks

- Find association rules, E.g.,
customers who buy product x buy
product y with probability 89%.

- Such rules are used to make item
display decisions, advertising
decisions, etc.



Term-document matrices

A collection of documents is represented by an m-by-n  matrix (bag-of-words model).

m
documents

n terms (words)

Aij = frequency of j-th
term in i-th document

Data mining tasks

- Cluster or classify documents

-  Find “nearest neighbors”

- Feature selection: find a subset
of terms that (accurately) clusters
or classifies documents.



Recommendation system matrices

The m-by-n matrix A represents m customers and n products.

n products

Aij = utility of j-th
product to i-th customer

Data mining task

• Given a few samples from A,
recommend high utility products
to customers.

• Recommend queries in
advanced match in sponsored
search

m
customers



DNA microarray data matrices

Microarray Data

Rows: genes (ca. 5,500)

Columns: e.g., 46 soft-issue tumor specimens

Tasks:

Pick a subset of genes (if it exists) that
suffices in order to identify the “cancer type”
of a patient

ge
ne

s

tumour specimens

Nielsen et al., Lancet, 2002



DNA SNP data matrices

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

Matrices including 100s of individuals and more than 300K SNPs are publicly available.

Task: split the individuals in different clusters depending on their ancestry, and

find a small subset of genetic markers that are “ancestry informative”.



Social networks (e.g., an e-mail network)

Represents, e.g., the email communications between groups of users.

n users

n users

Aij = number of emails
exchanged between

users i and j during a
certain time period

Data mining tasks

- cluster the users

- identify “dense” networks
of users (dense subgraphs)

- recommend friends

- clusters for bucket testing

- etc.



How people think about networks
“Interaction graph” model of networks:
• Nodes represent “entities”
• Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric
• Strength: powerful framework for analyzing algorithmic complexity
• Drawback: geometry used for learning and statistical inference



Matrices and graphs

Networks are often represented by a graph G=(V,E)
• V = vertices/things

• E = edges = interactions between pairs of things

Close connections between matrices and graphs; given
a graph, one can study:
• Adjacency matrix: Aij = 1 if an edge between nodes i and j

• Combinatorial Laplacian: D-A, where D is diagonal degree matrix

• Normalized Laplacian: I-D-1/2AD-1/2, related to random walks



The Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing σ1 ≥ σ2 ≥ … ≥ σρ, the singular values of A.

Often people use this via PCA or MDS or other related methods.

The formal definition:

Given any m x n matrix A, one can decompose it as:
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vector

2nd (right)
singular
vector

Singular values and vectors, intuition

σ1

σ2

The SVD of the m-by-2 data matrix (m data points in a 2-D space) returns:
• V(i): Captures (successively orthogonalized) directions of variance.
• σi: Captures how much variance is explained by (each successive) direction.



Rank-k approximations via the SVD
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Very important: Keeping top k singular vectors provides “best”
rank-k approximation to A!



Computing the SVD

Many ways; e.g.,
• LAPACK - high-quality software library in Fortran for NLA

• MATLAB - call “svd,” “svds,” “eig,” “eigs,” etc.

• R - call “svd” or “eigen”

• NumPy - call “svd” in LinAlgError class

In the past:

• you never computed the full SVD.

• Compute just what you need.

Ques: How true will that be true in the future?



Eigen-methods in ML and data analysis

Eigen-tools appear (explicitly or implicitly) in many
data analysis and machine learning tools:

• Latent semantic indexing

• PCA and MDS

• Manifold-based ML methods

• Diffusion-based methods

• k-means clustering

• Spectral partitioning and spectral ranking
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HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007), Nature

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)The Human Genome Diversity Panel (HGDP)

ASW, MKK, LWK,
& YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX
HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

SVD/PCA
returns…



Africa

Middle East

South Central
Asia

Europe

Oceania

East Asia

America

Gujarati
Indians

Mexicans

• Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

• The figure renders visual support to the “out-of-Africa” hypothesis.

• Mexican population seems out of place: we move to the top three PCs.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Africa
Middle East

S C Asia &
Gujarati Europe

Oceania

East Asia

America

Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and – of course – can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Mex
ica

ns

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Some thoughts ...

When is SVD/PCA “the right” tool to use?

• When most of the “information” is in a low-dimensional, k <<
m,n, space.

• No small number of high-dimensional components contain
most of the “information.”

Can I get a small number of actual columns that
are (1+ε)-as the best rank-k eigencolumns?

• Yes!  (And CUR decompositions cost no more time!)

• Good, since biologists don’t study eigengenes in the lab



Problem 1: SVD & “heavy-tailed” data

Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a graph
with power-law distributed degrees are also power-law
distributed.

What this means:
• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g., random
graph) implies heavy tail over eigenvalues.

• Idea: 10 components may give 10% of mass/information, but to get 20%,
you need 100, and to get 30% you need 1000, etc; i.e., no scale at which you
get most of the information

• No “latent” semantics without preprocessing.



Problem 2: SVD & “high-leverage” data
Given an m x n matrix A and rank parameter k:

• How localized, or coherent, are the (left) singular vectors?

• Let ρi = (PUk)ii = ||Uk
(i)||_2 (where Uk is any o.n. basis spanning that space)

These “statistical leverage scores” quantify which rows have the most
influence/leverage on low-rank fit

• Often very non-uniform (in interesting ways!) in practice



Q: Why do SVD-based methods work at all?

Given that “assumptions” underlying its use (approximately low-
rank and no high-leverage data points) are so manifestly violated.

A1: Low-rank spaces are very structured places.

• If “all models are wrong, but some are useful,” those that are useful
have “capacity control”

• I.e., that don’t give you too many places to hide your sins, which is
similar to bias-variance tradeoff in machine learning.

A2: They don’t work all that well.

• They are much worst than current “engineered” models---although
much better than very combinatorial methods that predated LSI.



Interpreting the SVD - be very careful

Reification

• assigning a “physical
reality” to large
singular directions

• invalid in general

Just because “If the
data are ‘nice’ then
SVD is appropriate”
does NOT imply
converse.

Mahoney and Drineas (PNAS, 2009)



Some more thoughts ...

BIG tradeoff between insight/interpretability and
marginally-better prediction in “next user interaction”

• Think the Netflix prize---a half dozen models capture the basic
ideas but > 700 needed to win.

• Clustering often used to gain insight---then pass to downstream
analyst who used domain-specific insight.

Publication/production/funding/etc pressures provide
a BIG bias toward finding false positives

• BIG problem if data are so big you can’t even examine them.



Outline (and lessons)

1. Matrices and graphs are basic structures for modeling data, and
many algorithms boil down to matrix/graph algorithms.

2. Often, algorithms work when they “shouldn’t,” don’t work when
they “should,” and interpretation is tricky but often of interest
downstream.

3. Analysts tell stories since they often have no idea of what the
data “look like,” but algorithms can be used to “explore” or
“probe” the data.

4. Large networks (and large data) are typically very different than
small networks (and small data), but people typically implicitly
assume they are the same.



Sponsored (“paid”) Search
Text-based ads driven by user query



Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information



Micro-markets in sponsored search

10 million keywords

1.
4 
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Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?



How people think about networks

advertiser

q
u

er
y

Some evidence for
micro-markets in
sponsored search?

A schematic illustration …

… of hierarchical clusters?



Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...



What do these networks “look” like?



What do the data “look like” (if you
squint at them)?

A “hot dog”? A “tree”? A “point”?

(or pancake that embeds well
in low dimensions)

(or tree-like hyperbolic
structure)

(or clique-like or
expander-like structure)



Squint at the data graph …

Say we want to find a “best fit” of the adjacency
matrix to:

What does the data “look like”? How big are α, β, γ?

α β

β γ

α≈ γ » β
low-dimensional

α» β » γ
core-periphery

α≈ β ≈ γ
expander or Kn

β» α ≈ γ
bipartite graph



Exptl Tools: Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.
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Community Score: Conductance
S

S’

41

 How community like is a set of
nodes?

 Need a natural intuitive
measure:

 Conductance (normalized cut)
φ(S) ≈ # edges cut / # edges inside

 Small φ(S) corresponds to more
community-like sets of nodes



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

42



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Bad
community
φ=5/6 = 0.83

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

44



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

Best
community
φ=2/8 = 0.25

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

45



Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



What do large networks look like?
Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Large Social and Information Networks



Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)

51Community size
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella



NCPP: LiveJournal (N=5M, E=43M)
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Community size

Better and
better

communities
Best communities get

worse and worse

 Best community
has ≈100 nodes

54



Comparison with “Ground truth” (1 of 2)

Networks with “ground truth” communities:

• LiveJournal12:
• users create and explicitly join on-line groups

• CA-DBLP:
• publication venues can be viewed as communities

• AmazonAllProd:
• each item belongs to one or more hierarchically organized
categories, as defined by Amazon

• AtM-IMDB:
• countries of production and languages may be viewed as
communities (thus every movie belongs to exactly one
community and actors belongs to all communities to which
movies in which they appeared belong)



Comparison with “Ground truth” (2 of 2)

LiveJournal CA-DBLP

AmazonAllProd AtM-IMDB



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

0.99 0.55

0.55 0.15

0.99 0.17

0.17 0.82
K1 =

E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

0.2 0.2

0.2 0.2

(also, an expander)
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Some more thoughts ...
What I just described is “obvious” ...
• There are good small clusters

• There are no good large clusters

... but not “obvious enough” that analysts don’t assume
otherwise when deciding what algorithms to use

• k-means - basically the SVD

• Spectral normalized-cuts - appropriate when SVD is

• Recursive partitioning - recursion depth is BAD if you nibble off
100 nodes out of 100,000,000 at each step



Real large-scale applications

A lot of work on large-scale data already implicitly
uses variants of these ideas:
• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for
automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully “whittling down”
neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit
regularization models are most consistent with data

These and related methods are often very non-robust

• basically due to the structural properties described,

• since the data are different than the story you tell.



Implications more generally

Empirical results demonstrate:

• (Good and large) network clusters, at least when formalized i.t.o. the
inter-versus-intra bicriterion, don’t really exist in these graphs.

• To the extent that they barely exist, existing tools are designed not to
find them.

This may be “obvious,” but not really obvious enough ...

• Algorithmic tools people use, models people develop, intuitions that get
encoded in seemingly-minor design decisions all assume otherwise

Drivers, e.g., funding, production, bonuses, etc bias toward “positive” results

• Finding false positives is only going to get worse as the data get bigger.



Conclusions (and take-home lessons)

1. Matrices and graphs are basic structures for modeling data, and
many algorithms boil down to matrix/graph algorithms.

2. Often, algorithms work when they “shouldn’t,” don’t work when
they “should,” and interpretation is tricky but often of interest
downstream.
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small networks (and small data), but people typically implicitly
assume they are the same.


