Local graph analytics:
beyond characterizing community structure

Michael W. Mahoney

(ICSI, AMP/RISE Lab, and Department of Statistics, UC Berkeley)

Local graph clustering: motivation
Facebook social network: colour denotes class year

Normalized cuts: finds 20% of the graph

Local graph clustering: finds 3% of the graph

Local graph clustering: finds 17% of the graph

Collaboration network

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007
Global graph clustering: normalized cuts

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007
Local graph clustering: small clusters

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007
Current algorithms and running time
Global, weakly and strongly local methods

Global methods: $O(\text{volume of graph})$
- The workload depends on the size of the graph

Weakly local methods: $O(\text{volume of graph})$
- A seed set of nodes is given
- The solution is locally biased to the input seed set
- The workload depends on the size of the graph

Strongly local methods: $O(\text{volume of output cluster})$
- A seed set of nodes is given
- The solution is locally biased to the input seed set
Global, weakly and strongly local methods

Cluster quality

We measure cluster quality using

\[
\text{Conductance} := \frac{\text{number of edges leaving cluster}}{\text{sum of degrees of vertices in cluster}}
\]

- Conductance\((\{A, B\}) = \frac{2}{2 + 2} = \frac{1}{2}\)
- Conductance\((\{A, B, C\}) = \frac{1}{2 + 2 + 3} = \frac{1}{7}\)

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms
Cluster quality

We measure cluster quality using

\[
\text{Conductance} := \frac{\text{number of edges leaving cluster}}{\text{sum of degrees of vertices in cluster}}
\]

- Conductance(\{A,B\}) = \frac{2}{2 + 2} = \frac{1}{2}
- Conductance(\{A,B,C\}) = \frac{1}{2 + 2 + 3} = \frac{1}{7}

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms
Cluster quality

We measure cluster quality using

Conductance := \frac{\text{number of edges leaving cluster}}{\text{sum of degrees of vertices in cluster}}

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms
We measure cluster quality using

\[
\text{Conductance} := \frac{\text{number of edges leaving cluster}}{\text{sum of degrees of vertices in cluster}}
\]

- Conductance(\{A, B\}) = \frac{2}{2 + 2} = \frac{1}{2}
- Conductance(\{A, B, C\}) = \frac{1}{2 + 2 + 3} = \frac{1}{7}

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms
Cluster quality

We measure cluster quality using

\[
\text{Conductance} := \frac{\text{number of edges leaving cluster}}{\text{sum of degrees of vertices in cluster}}
\]

- Conductance({A,B}) = \frac{2}{2 + 2} = \frac{1}{2}
- Conductance({A,B,C}) = \frac{1}{2 + 2 + 3} = \frac{1}{7}

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms
Local graph clustering methods

- MQI (strongly local): Lang and Rao, 2004
- Approximate Page Rank (strongly local): Andersen, Chung, Lang, 2006
- spectral MQI (strongly local): Chung, 2007
- Flow-Improve (weakly local): Andersen and Lang, 2008
- MOV (weakly local): Mahoney, Orecchia, Vishnoi, 2012
- Nibble (strongly local): Spielman and Teng, 2013

- Sweep cut rounding algorithm
Shared memory parallel methods

- **We parallelize 4 strongly local spectral methods + rounding**
 1. Approximate Page Rank ← this talk
 2. Nibble
 3. Deterministic HeatKernel Approximate Page-Rank
 4. Randomized HeatKernel Approximate Page-Rank
 5. Sweep cut rounding algorithm ←← this talk

- **All local methods take various parameters**
 - Parallel method 1: try different parameters independently in parallel
 - Parallel method 2: **parallelize algorithm for individual run**
 - Useful for **interactive** setting where tweaking of parameters is needed
Community structure
Communities in large informatics graphs

Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)
Leskovec, Lang, & Mahoney “Community Structure in Large Networks ...” (2008, 2010)
Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

People imagine social networks to look like:

Real social networks actually look like:

How do we know this plot is “correct”?

• (since computing conductance is intractable)
• Lower Bound Result; Structural Result; Modeling Result; Etc.
• Algorithmic Result (ensemble of sets returned by different approximation algorithms are very different)
• Statistical Result (Spectral provides more meaningful communities than flow)

Data are expander-like at large size scales !!!

Size-resolved conductance (degree-weighted expansion) plot looks like:

There do not exist good large clusters in these graphs !!!
NCPs and three types of graphs

Jeub, Balachandran, Porter, Mucha, and Mahoney (2014)

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Edges</th>
<th>$\langle k \rangle$</th>
<th>λ_2</th>
<th>$\langle C \rangle$</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-GrQc</td>
<td>4158</td>
<td>13422</td>
<td>6.5</td>
<td>0.0019</td>
<td>0.56</td>
<td>Coauthorship: arXiv general relativity</td>
</tr>
<tr>
<td>CA-AstroPh</td>
<td>17903</td>
<td>196972</td>
<td>22.0</td>
<td>0.0063</td>
<td>0.63</td>
<td>Coauthorship: arXiv astrophysics</td>
</tr>
<tr>
<td>FB-Johns55</td>
<td>5157</td>
<td>186572</td>
<td>72.4</td>
<td>0.1258</td>
<td>0.27</td>
<td>Johns Hopkins Facebook network</td>
</tr>
<tr>
<td>FB-Harvard1</td>
<td>15086</td>
<td>824595</td>
<td>109.3</td>
<td>0.0094</td>
<td>0.21</td>
<td>Harvard Facebook network</td>
</tr>
<tr>
<td>US-Senate</td>
<td>8974</td>
<td>422335</td>
<td>60.3</td>
<td>0.0013</td>
<td>0.50</td>
<td>Network of voting patterns in U.S. Senate</td>
</tr>
<tr>
<td>US-House</td>
<td>36646</td>
<td>6930858</td>
<td>240.5</td>
<td>0.0002</td>
<td>0.58</td>
<td>Network of voting patterns in U.S. House</td>
</tr>
</tbody>
</table>

Table 1: Six medium-sized networks. For each network, we show the number of nodes and edges in the largest connected component (LCC), the mean degree/strength ($\langle k_i \rangle$), the second-smallest eigenvalue (λ_2) of the normalized Laplacian matrix, the mean clustering coefficient ($\langle C_i \rangle$), and a description.
NCPs and core-periphery (or not)

Jeub, Balachandran, Porter, Mucha, and Mahoney (2014)
Approximate Page-Rank
Personalized Page-Rank vector

Pick a vertex u of interest and define a vector:
\[s[u] = 1, \quad s[v] = 0 \quad \forall v \neq u \]
a teleportation parameter $0 \leq \alpha \leq 1$ and $W = AD^{-1}$ then the PPR vector is given by solving:
\[
(1 - \alpha)W + \alpha s e^T)p = p \Leftrightarrow (I - (1 - \alpha)W)p = \alpha s
\]
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Algorithm idea: iteratively spread probability mass from vector s around the graph.

- r is the residual vector, p is the solution vector
- $\rho > 0$ is tolerance parameter

Run a coordinate descent solver for PPR until: any vertex u satisfies $r[u] \geq -\alpha \rho d[u]$

Initialize: $p = 0$, $r = -\alpha s$

While termination criterion is not met do

1. Choose any vertex u where $r[u] < -\alpha \rho d[u]$

2. $p[u] = p[u] - r[u]$

4. $r[u] = 0$

residual update

Final step: round the solution p using sweep cut.
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Initialize: \(p = 0, r = -\alpha \)

While termination criterion is not met do

1. Choose any vertex \(u \) where \(r[u] < -\alpha d[u] \)
2. \(p[u] = p[u] - r[u] \)
3. For all neighbours \(v \) of \(u \): \(r[v] = r[v] + (1-\alpha)r[u]A[u,v]/d[u] \)
4. \(r[u] = 0 \)

\[\frac{\|r\|_1}{\alpha} = 1, \quad \|p\|_1 = 0, \quad \frac{\|r\|_1}{\alpha} + \|p\|_1 = 1 \]
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

\[
\|r\|_1 = 1, \quad \|p\|_1 = 0.1, \quad \|r\|_1 = 1 + \|p\|_1 = 1.1
\]

Initialize: \(p = 0, r = -\alpha \)
While termination criterion is not met do
1. Choose any vertex \(u \) where \(r[u] < -\alpha d[u] \)
2. \(p[u] = p[u] - r[u] \)
3. For all neighbours \(v \) of \(u \): \(r[v] = r[v] + (1-\alpha)r[u]A[u,v]/d[u] \)
4. \(r[u] = 0 \)
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

- Initialize: $p = 0$, $r = -\alpha s$, where s is a probability vector
- While termination criterion is not met do
 1. Choose any vertex u where $r[u] < -\alpha p d[u]$
 2. $p[u] = p[u] - r[u]$
 4. $r[u] = 0$

\[
\frac{\|r\|_1}{\alpha} = 0.9, \quad \|p\|_1 = 0.1, \quad \frac{\|r\|_1}{\alpha} + \|p\|_1 = 1.0
\]
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

\[\left\| r \right\|_1 \alpha = 0.855, \quad \left\| p \right\|_1 = 0.145, \quad \frac{\left\| r \right\|_1}{\alpha} + \left\| p \right\|_1 = 1.0 \]

Initialize: \(p = 0, r = -\alpha \)
While termination criterion is not met do
1. Choose any vertex \(u \) where \(r[u] < -\alpha p d[u] \)
2. \(p[u] = p[u] - r[u] \)
3. For all neighbours \(v \) of \(u \): \(r[v] = r[v] + (1 - \alpha) r[u] A[u,v] / d[u] \)
4. \(r[u] = 0 \)
Approximate Personalized Page-Rank

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Initialize: $p = 0, r = -\alpha s$, where s is a probability vector

While termination criterion is not met do

1. Choose any vertex u where $r[u] < -\alpha p d[u]$
2. $p[u] = p[u] - r[u]$
4. $r[u] = 0$

$\|r\|_1 = 0.7897, \quad \|p\|_1 = 0.2103, \quad \frac{\|r\|_1}{\alpha} + \|p\|_1 = 1.0$
Running time APPR

- At each iteration APPR touches a single node and its neighbours
 - Let supp(p) be the support of vector p at termination which satisfies $\text{vol}(\text{supp}(p)) \leq 1/(\alpha \rho)$
 - Overall until termination the work is: $O(1/(\alpha \rho))$ [Andersen, Chung, Lang, FOCS, 2006]

- We store vectors p and r using sparse sets
 - We can only afford to do work proportional to nodes and edges currently touched
 - We used `unordered_map` data structure in STL (Standard Template Library)
 - Guarantees $O(1/(\alpha \rho))$ work
Variational Perspective

APPR is an approximation algorithm but what is it minimizing?

\[
\text{minimize } \frac{1 - \alpha}{2} \|Bp\|_2^2 + \alpha \|H(1 - p)\|_2^2 + \alpha \|Zp\|_2^2 + \rho \alpha \|Dp\|_1
\]

where

- B: is the incidence matrix
- Z, H: are diagonal scaling matrices

Variational Perspective

• The optimal solution of the l1-reg. problem has local Cheeger-like guarantees.
 ✓ For unweighted graphs this translates to at most 1/\rho non-zeros at optimality.

• The volume of the nodes that are non-zero at optimality is bounded by 1/\rho.
 ✓ The result holds for unweighted graphs as well.

• Proximal gradient descent (standard method in optimization)
 ✓ converges to the solution \textbf{without} touching nodes that are zero at optimality.
 ✓ Running time: O(1/(\rho \alpha) \times \log \text{factor on } \alpha 1/\alpha \text{ and } 1/\rho).

Variational Perspective

• Is accelerated proximal gradient descent a strongly local method?

• If yes, then we expect $O(1/\sqrt{\alpha} \times 1/\rho)$ running time, compared to $O(1/\alpha \rho)$
Shared memory parallelization
Running time: work depth model

Work depth model: J. Jaja. Introduction to parallel algorithms. Addison-Wesley Professional, 1992

Note that our results are not model dependent.

Model
- Work: number of operations required
- Depth: longest chain of sequential dependencies

Let P be the number of cores available.

By Brent’s theorem [1] an algorithm with work W and depth D has overall running time: \(\frac{W}{P} + D \).

In practice \(\frac{W}{P} \) dominates. Thus parallel efficient algorithms require the same work as its sequential version.

Parallel Approximate Personalized Page-Rank

While termination criterion is not met do
1. Choose **ALL (instead of any)** vertex u where \(r[u] < -\alpha \rho \deg[u] \)
2. \(p[u] = p[u] - r[u] \)
3. For all neighbours v of u: \(r[v] = r[v] + (1-\alpha)/(2\deg[u])r[u] \)
4. \(r[u] = (1-\alpha)r[u]/2 \)

- **Asymptotic work remains the same:** \(O(1/(\alpha \rho)) \).
- **Parallel randomized implementation:** work \(O(1/(\alpha \rho)) \) and depth \(O(\log(1/(\alpha \rho))) \).
 - Keep track of two **sparse** copies of p and r
 - Concurrent hash table for sparse sets \(\leftarrow \) important for \(O(1/(\alpha \rho)) \) work
 - Use atomic increment to deal with conflicts
 - Use of Ligra (Shun and Blelloch 2013) to process only “active” vertices and their edges
- **Same theoretical graph clustering guarantees**, Fountoulakis et al. 2016.
Data

<table>
<thead>
<tr>
<th>Input graph</th>
<th>Num. vertices</th>
<th>Num. edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>soc-JL</td>
<td>4,847,571</td>
<td>42,851,237</td>
</tr>
<tr>
<td>cit-Patents</td>
<td>6,009,555</td>
<td>16,518,947</td>
</tr>
<tr>
<td>com-LJ</td>
<td>4,036,538</td>
<td>34,681,189</td>
</tr>
<tr>
<td>com-Orkut</td>
<td>3,072,627</td>
<td>117,185,083</td>
</tr>
<tr>
<td>Twitter</td>
<td>41,652,231</td>
<td>1,202,513,046</td>
</tr>
<tr>
<td>Friendster</td>
<td>124,836,180</td>
<td>1,806,607,135</td>
</tr>
<tr>
<td>Yahoo</td>
<td>1,413,511,391</td>
<td>6,434,561,035</td>
</tr>
</tbody>
</table>
Performance

- Slightly more work for the parallel version
- Number of iterations is significantly less
Performance

- 3-16x speed up
- Speedup is limited by small active set in some iterations and memory effects
Network community profile plots

Friendster, 124M nodes, 1.8B edges
Yahoo, 1.4B nodes, 6.4B edges

\[\mathcal{O}(10^5) \] approximate PPR problems were solved in parallel for each plot,

Agrees with conclusions of [Leskovec et al. 2008], i.e., good clusters tend to be small.
Rounding: sweep cut

- Round returned vector p of approximate PPR
 - **1st step ($O(1/(\alpha \rho) \log(1/(\alpha \rho)))$ work):** Sort vertices by non-increasing value of non-zero $p[u]/d[u]$
 - **2nd step ($O(1/(\alpha \rho))$ work):** Look at all prefixes of sorted order and return the cluster with minimum conductance,

```
Sorted vertices: \{A,B,C,D\}
```

```
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>1</td>
</tr>
<tr>
<td>{A,B}</td>
<td>1/2</td>
</tr>
<tr>
<td>{A,B,C}</td>
<td>1/7</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>3/11</td>
</tr>
</tbody>
</table>
```
Parallel sweep cut

• **1st step:** Sort vertices by non-increasing value of non-zero $p[u]/d[u]$.
 - Use parallel sorting algorithm, $O(1/(\alpha \rho) \log(1/(\alpha \rho)))$ work and $O(\log(1/(\alpha \rho)))$ depth.

• **2nd step:** Look at all prefixes of sorted order and return the cluster with minimum conductance.
 - Naive implementation: for each sorted prefix compute conductance, $O((1/(\alpha \rho))^2)$.
 - **We design a parallel algorithm based on integer sorting and prefix sums that takes** $O(1/(\alpha \rho))$ time.
 - **The algorithm computes the conductance of ALL sets with a single pass over the nodes and the edges.**
Parallel sweep cut: 2nd step

Incidence matrix B

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>B-C</td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-D</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>D-E</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>D-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>D-G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>F-H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Sorted vertices: \{A, B, C, D\}

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Sum cols B</th>
<th>Volume</th>
<th>Conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
<td>2</td>
<td>2/2=1</td>
</tr>
<tr>
<td>{A, B}</td>
<td>2</td>
<td>4</td>
<td>2/4=1/2</td>
</tr>
<tr>
<td>{A, B, C}</td>
<td>1</td>
<td>7</td>
<td>1/7</td>
</tr>
<tr>
<td>{A, B, C, D}</td>
<td>3</td>
<td>11</td>
<td>3/11</td>
</tr>
</tbody>
</table>

- Sort vertices
 - work: $O(1/(\alpha \rho) \log(1/(\alpha \rho)))$, depth: $O(\log(1/(\alpha \rho)))$
- Represent matrix B with a sparse set using vertex identifiers and the order of vertices
 - work: $O(1/(\alpha \rho))$, depth: $O(\log(1/(\alpha \rho)))$
- Use prefix sums to sum elements of the columns
 - work: $O(1/(\alpha \rho))$, depth: $O(\log(1/(\alpha \rho)))$
Parallel sweep cut: performance

![Graph showing running time vs number of cores for parallel and sequential sweeps.]
Node Embeddings
Locality and Structure Aware Graph Node Embedding (Lasagne)

• Embed nodes into lower dimensional spaces in an unsupervised way
 ✓ Takes into account local structure

• Useful for
 ✓ Multi-label classification (experiments follow in next slides)

• What is the method?
 ✓ Run local graph clustering from each node (runs in nearly linear time)
 ✓ Get context for each node by sampling neighbors using the Personalized PageRank vector of each node.
 ✓ Build a context matrix for word-to-vec model.
 ✓ Train the word-to-vec model.
Datasets

• Protein-Protein Interactions (PPI):
 This is a subgraph of the PPI network for Homo Sapiens.

• BlogCatalog:
 This is a social network graph where each of the 10,312 nodes corresponds to a user and the 333,983 edges represent the friendship relationships between bloggers. 39 different interest groups provide the labels.

• IMDb Germany:
 This kind of artificial dataset is created from the IMDb movie database. It consists of 32,732 nodes, 1,175,364 edges and 27 labels. Each node represents an actor/actress who played in a german movie. Edges connect actors/actresses that were in a cast together and the node labels represent the genres that the corresponding actor/actress played.

• Flickr:
 The Flickr network is a quite dense social network graph with 80,513 nodes and 5,899,882 edges. Each node describes a user and the links represent friendships.
Datasets Overview

Blogcatalog
- Social Network
- Nodes: 10312 (Blogger)
- Edges: 333983 (Friendship links)
- Considered classes: 29 (Blog categories)

PPI
- Protein-Protein-Interaction Network
- Nodes: 3890 (Proteins)
- Edges: 38739 (Interactions)
- Considered classes: 34 (Biological states)
Datasets Overview

IMDb Germany
- Collaboration Network
- Nodes: 32732 (Actors)
- Edges: 1175364 (Collaborations)
- Considered classes: 25 (Genres of the movies)

Flickr
- Social Network
- Nodes: 80513 (Users)
- Edges: 5899882 (Friendship links)
- Considered classes: 195 (Interest group memberships)
Word2Vec [Mikolov, 2013]

- Learning word representations technique from NLP
- Word representations are learned based on their context (Distributional Hypothesis - words in similar contexts are similar)

 ... how to stop puppy from barking...
 ... barking dog stole my sleep...

\mathbf{x}^T

\[
\log \sigma(v'_c^T \cdot v_{w_E}) + \sum_{i=1}^{k} E_{w_i \sim P_n(w)}[\log \sigma(-v'_c^T \cdot v_{w_E})]
\]

https://www.tensorflow.org/versions/r0.12/tutorials/word2vec/index.html
Recent “node embedding” work

DeepWalk [Perozzi, 2014]
- Adaptation of word2vec to graphs
- Learning representations of nodes in the graph
- ‘Sentences’ are represented by random walks: n random walks of size t
 - The sequence of nodes in random walk is interpreted as “sentence”
 - For each node in the random walk w nodes visited previously to it and w nodes visited after it are interpreted as its context
- Evaluation with Multi-Label classification

Line [Tang, 2015]
- Separately earns representations based on direct neighbours and neighbours of direct neighbours
- Final representation vector is the concatenation of both representation

node2vec [Grover, 2016]
- Different sampling strategy for random walk (Breadth vs. Depth first)
- DFS learns Homophily (highly interconnected nodes are similar)
- BFS learns Structural Equivalence (nodes with similar structural roles are similar)
- Combination of both for the random walk (2nd order random walk):
Recent “node embedding” work

- The main difference is how the neighborhood is explored

- Strong assumptions about neighborhood structure:
 - Distance to the relevant neighbours
 - Neighborhoods of all nodes follow the same pattern

- node2vec:
 - Additional parameters p and q
 - Preprocessing quadratic in node degree
Lasagne

- Node embedding based on Personal PageRank (PPR) with the node as only seed (adaptation of ACL06 algorithm)

- PPR describes the local neighborhood
- Only assumption is the level of locality: teleportation parameter
- Sampling of training instances using PPR entries as weights

- Captures locality more accurately

- Instead of skip-gram/cbow:
 - Node as part of own context
 - Discard own weight, replace through the second largest
NCP plots of datasets

Figure 5: NCP plots for used datasets. Red, solid lines sketch the community structure of the original graph. Blue, dashed lines plot the structure of randomly rewired networks.
Multi-label classification

Figure 6: F_1 macro scores for BlogCatalog

Figure 7: F_1 macro scores for PPI

Figure 8: F_1 macro scores for IMDb Germany

Figure 9: F_1 macro scores for Flickr
Social Models
Decision Making

- Predicting choices of individuals is in high demand for computational social sciences, economics etc.
- Digital networking facilitates information flow and spread of influence among individuals.
- **Objective: social graph regularization for latent class discrete choice models.**
 - Individuals with an edge in the social network have higher probability of having the same latent class.

Graphical model (plate notation)

Combines

- Expressiveness of parametric modeling
- Descriptive exploratory power of latent class
- Social network regularization

Extends

- the range of inferences possible with the state-of-the-art discrete choice models
Preliminary Results

(a) Start of the study (Feb 1995): 127 non-smokers (blue), 23 smokers (red), 10 unobserved (yellow) 422 edges.
(b) End of the study (Jan 1997): 98 non-smokers (blue), 39 smokers (red), 23 unobserved (yellow) 339 edges.

Figure 5: Social graphs of student friendships and smoking behaviors within the 2 years period of the study.

<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
</table>
- Start of study: students are not influenced by smoker friends, prediction is similar for all models.
- End of study: some students were influenced by smoker friends, prediction is better for the social latent class model.

| Table 3: Adolescent smoking prediction, February 1995 |
|-----------------|-----------------|
| model | accuracy |
| logistic regression | 81.1% |
| latent class logistic regression | 78.9% |
| social logistic regression | 80.0% |
| social latent class logistic regression | 82.2% |

| Table 4: Adolescent smoking prediction, January 1997 |
|-----------------|-----------------|
| model | accuracy |
| logistic regression | 68.5% |
| latent class logistic regression | 72.1% |
| social logistic regression | 65.5% |
| social latent class logistic regression | 77.1% |

Reference
Social Mobility (ongoing work)

- Activity based travel demand models are essential tools used in transportation planning and regional development scenario evaluation.

- Activity prediction is performed by using cell phone data, i.e., call detail records and GPS data.

- **Objective: incorporate social influence in activity prediction tasks.**
 - Construct social graphs using cell phone data which together with GPS data are feed into a Long Short-Term Memory neural network for activity prediction.
Real-time Personalized Prediction (ongoing work)

- **Objective:** develop models with personalized solution, i.e., personalized solutions correspond to higher likelihood.
- **Real-time:** training the model requires “local” running time since only highly influential individuals are touched.
- Does not require clipping the graph a-priori, we let the optimal solution to “decide” which individuals are the most important.
- Data and social graph are considered within a single model, i.e., not a two-stage procedure.

Personalize the solution by localizing the social graph

New solvers with local running time

- By personalizing starting point of the algorithm
- Maintaining local operations per iteration
- Early termination, i.e., free lunch

Preliminary work

Conclusions

• Local spectral methods
 ✓ Variants of usual global spectral methods that are biased toward a small part of large data.
 ✓ Strong algorithmic and statistical theory.
 ✓ Very good in practice, e.g., characterizing community structure.

• Beyond community structure.
 ✓ Variational perspective: unifying framework and several improved variants.
 ✓ Shared memory parallel implementations of billion node graphs.
 ✓ Combine with NLP w2v ideas for better node embedding and classification.
 ✓ Starting to combine with social discrete choice and real-time prediction models